Тепловые потери
Q2 – потери теплоты с уходящими газами. Это наибольшие потери теплоты в котлоагрегате они составляют 5 – 10 % и являются следствием того, что температура уходящих газов выше температуры окружающей среды.
Q2 = (Нух – Нх.в.)(1 - 4)
Нух – энтальпия уходящих газов: Нух = αухL0спсtух , где спс – теплоемкость продуктов сгорания.
Нхв – энтальпия холодного воздуха: Нхв = α тL0свtхв , где α т – коэффициент избытка воздуха в топке.
1 - 4 – поправка, учитывающая уменьшение количества продуктов сгорания из–за физической неполноты сгорания топлива.
С понижением температуры уходящих газов на 12-150С потери теплоты уменьшаются на 10С.
Пути снижения температуры уходящих газов: 1) уменьшение αт и αух, то есть совершенствование процесса горения и ликвидация присосов холодного воздуха, 2) увеличение хвостовых поверхностей теплообмена (экономайзер и воздухоподогреватель).
Предельно минимальная температура уходящих газов определяется условием предотвращения возможности низкотемпературной коррозии хвостовых поверхностей нагрева, и зависят от содержания окислов серы в уходящих газах. Поэтому обычно температура уходящих газов составляет 110…1700С. Кроме того уменьшение коэффициента избытка воздуха в топке α т приводит к увеличению потерь от химической неполноты сгорания Q3, поэтому оптимальное α т определяется из условия минимума q2+q3.
Оптимальный коэффициент избытка воздуха в уходящих газах и оптимальная температура уходящих газов определяются из условия минимума приведенных затрат.
q,%
α опт α
Затраты
tухопт tух
При увеличении tух возрастает удельный расход топлива, так как снижается КПД котла, что приводит к увеличению эксплуатационных затрат, при этом увеличение tух позволяет уменьшить поверхности нагрева котла, его габариты, тем самым снижая капитальные затраты.
В процессе эксплуатации котла, поверхности нагрева загрязняются, что приводит к ухудшению условий теплообмена и соответственно к увеличению величины Q2. Таким образом, для обеспечения паспортного КПД котла необходимо проводить систематическую очистку поверхностей нагрева.
Q3 – потери тепла от химической неполноты сгорания топлива. Возникают при появлении в продуктах сгорания горючих газообразных веществ: CO, Н2, СmHn. Причинами появления химической неполноты сгорания могут быть:
1) общий или местный недостаток воздуха, 2) плохое перемешивание топлива и воздуха, 3) малые размеры топки, 4) низкая температура в топочной камере, 5) слишком высокая температура, что может привести к диссоциации продуктов сгорания.
Величина Q3 сильно зависит от значения α (смотри предыдущую диаграмму), так же Q3 зависит от расхода топлива (от нагрузки котла).
q3
I – зона малого расхода топлива и низкой температуры в топке
II – оптимальная зона
III – зона большого расхода топлива и нехватки объема топки
В основе расчета Q3 лежит уравнение:
Q3 = QCOVCO+ QH2VH2+QCH4VCH4+…
Vi - объем горючего газа в продуктах сгорания;
Qi – теплота сгорания горючего газа.
При определении неполноты сгорания и разработке мероприятий по снижению величины Q3 следует иметь в виду, что в продуктах сгорания в первую очередь появляется СО, это наиболее трудносжигаемый компонент среди возможных продуктов неполноты сгорания. Затем появляется Н2 и другие газы. Если в продуктах сгорания отсутствует СО2, то нет и других горючих газов и величина Q3=0.
Q4 – потери от физической неполноты сгорания.
Q4=Q4пр +Q4шл +Q4ун
Q4пр – потери тепла с провалом через холостниковые решетки;
Q4шл – потери тепла со шлаком;
Q4ун – потери тепла с уносом топлива с продуктами сгорания.
Эти потери характерны для твердого топлива и могут достигать для промышленных котельных 10…12%. Для газообразного и жидкого топлива Q4=0. При проектировании величину Q4 выбирают из справочной литературы в зависимости от вида топлива и месторождения. При эксплуатации Q4 определяется путем анализа шлака и провала.
Количество уноса определяется из золового баланса: Ар – (пр+шл), где Ар – зольность топлива.
Q5 – потери от наружного охлаждения. Возникают вследствие разности температур наружной поверхности и окружающей среды. Зависят от паропроизводительности агрегата
q5, %
10 100 1000
1 – собственно котел;
2 – котел вместе с хвостовыми поверхностями.
Потери на наружное охлаждение пропорциональны площади наружной поверхности котла. Так как паропроизводительность котла, которая пропорциональна объему топочного пространства, возрастает примерно в 1.5 раза быстрее, чем площадь наружной поверхности, то соответственно потери на наружное охлаждение с увеличением паропроизводительности будут уменьшаться. При проектировании Q5 определяется из справочников при номинальной паропроизводительности котла. Если фактическая паропроизводительность отличается от номинальной, то
q5= q5н н
Q6 – потери с физической теплотой шлаков.
Потери Q6 возникают при удалении из топочной камеры шлаков имеющих высокую температуру. Эти потери характерны для топок с жидким удалением шлаков.
Q6 = ашл сзл tш р ашл – доля золы топлива в шлаке; сзл – средняя теплоемкость золы; tш – температура шлака.
Q6 значительна для высокосернистых топлив и с высокой зольностью. Величина Q6 составляет 1 – 5%. При зольности менее 10% в котлах с камерными топками Q6 < 0.2% и в тепловом балансе не учитывается.
13.Теплообмен в элементах котла.
Интенсивность теплообмена в элементах котла зависит от соотношения радиационного и конвективного теплообмена. Это соотношение по ходу газов уменьшается ,то есть уменьшается влияние радиационного и увеличивается влияние конвективного теплообмена.
К экранным трубам, расположенным в области высоких температур перенос тепла радиацией составляет более 90%.
В ширмовых поверхностях нагрева , расположенных на входе из топки ,тепловосприятие за счет радиации составляет от 60% до 70%. Далее по мере снижения температуры газов отношение доли теплоты , передаваемой конвекцией увеличивается и составляет пароперегревателе 70-80%, а в воздухоподогревателе более95%.
По определяющему способу передачи теплоты принято условно разделять поверхности нагрева на: радиационные полурадиационные и конвективные.
К радиационным относятся – экраны, фестоны, и ступени пароперегревателя, расположенные в топке.
К полурадиационным относятся - ширмовые поверхности и испарительные поверхности нагрева, расположенные за топкой.
К конвективным поверхностям относятся поверхности пароперегревателя, расположенные за топкой , экономайзер и воздухоподогреватель.
Дата добавления: 2015-07-10; просмотров: 2023;