Перепад давления при движении рабочей среды в трубе.

В результате решения уравнения движения получено в общем виде выражение (8.14) для перепада давления Δр при движении потока в трубе длиной l

При движении однофазного потока для расчета сопротивления трения ΔpТР, местного сопротивления ΔpМ ,сопротивление ускорения ΔpУСК, и нивелирного сопротивления ΔpНИВ, применяются формулы (8.14 а) - (8.14 г) с учетом характеристик однофазного потока.

При движении двухфазного потока для расчета Δp используются те же формулы (8.14). Скорости потока w1 , w2, wСР , плотность потока ρСР, а также в начале ρ1 и конце ρ2 участка определяются по истинным характеристикам двухфазного потока.

Учитывая, что истинные характеристики потока рассчитываются сложным образом по эмпирическим зависимостям, при расчете гидравлического сопротивления трения и местного сопротивления за основу берется гомогенная модель потока, а негомогенность действительного потока учитывается экспериментальными коэффициентами.

В формуле (8.14 а) по уравнению неразрывности заменим массовую скорость (φpw) через скорость циркуляции w0 и плотность ρ' (ρw = ρ'w0), среднюю скорость смеси wСР выразим из соотношения ρwср = ρ'w0. В результате получим

(8.53)

С учетом

выразим

(8.54)

Еще раз отметим, что полученная формула справедлива для адиабатного (без обогрева) гомогенного двухфазного потока. Обозначим через Δp0 сопротивление трения при x = 0.

Тогда

(8.55)

Для обогреваемого гомогенного потока в формуле (8.75) принимается среднеарифметическое значение x

где x1, x2, - массовое паросодержание на входе и выходе участка трубы, тогда

(8.56)

Для гомогенного потока сопротивление трения пропорционально массовому паросодержанию (рис. 8.13).

 

Экспериментальные данные, приведенные на этом же рисунке, показывают, что гидравлическое сопротивление трения в действительном двухфазном потоке существенно отличается от гомогенной модели. Это относится как к случаю с обогревом потока, так и к адиабатному потоку. Поэтому в расчетные формулы (8.55) и (8.56) вводится коэффициент ψ, учитывающий влияние структуры потока, и формулы приобретают вид:

при постоянном паросодержании

(8.57)

при переменном паросодержании

(8.58)

где - среднее паросодержание на участке,

 

- средний коэффициент, который определяется по формуле

где ψН, xН, ψК, xК, относятся к начальному и конечному сечениям участка (трубы).

Коэффициент ψ зависит от скорости потока и его давления. Номограммы для определения ψ приведены в справочной литературе.

Интенсивность теплового потока q, кВт/м2 или кВт/м длины, влияет на величину xср( ), что учитывается при расчете ΔpТР , и на структуру потока. При малых xСР наличие обогрева трубы увеличивает сопротивление трения, а при больших xСР - уменьшает. Влияние теплового потока q на сопротивление трения обычно невелико, сопоставимо с погрешностью определения сопротивления и при расчете ΔpТР в явном виде на учитывается. Поэтому коэффициент ψ для обогреваемых труб прямоточных элементов котла определяется в зависимости от xСР, массовой скорости ρw и давления р.

При расчете потерь давления в местных сопротивлениях ΔpМ за основу принимается формула для гомогенного потока, аналогичная (8.54), а действительная структура потока учитывается введением условного коэффициента местного сопротивления ςМ

(8.59)

Расчет потерь давления от ускорения потока ΔpУСК производится по (8.14 в). Для двухфазного потока эту формулу можно привести к другому виду с учетом уравнения неразрывности

(ρw = ρ'wСМ = w(1/vСМ);

(8.60)

где vН и vК - удельный объем теплоносителя в начале и конце участка (однофазного или двухфазного).

Удельный объем пароводяной смеси был ранее определен в (8.49 б).

Окончательно получим

(8.61)

При расчете нивелирного сопротивления (нивелирного напора) ΔpНИВ среднюю плотность двухфазного потока определяют по среднему значению истинного паросодержания

(8.62)

Для вертикальной трубы высотой Н

(8.63)

где знак” +” для подъемного, а “- “для опускного движения потока.

Для расчета составляющих перепада давления Δp необходимо знать конструктивные характеристики трубы, а также определить коэффициент трения ψ, коэффициент местного сопротивления ξМ, ξМ. Эти данные приведены в Нормативном методе гидравлических расчетов котельных агрегатов и соответствующих справочниках.

 

 








Дата добавления: 2015-07-10; просмотров: 1113;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.