Учебный вопрос № 2. Теплоотдача при конденсации пара
При соприкосновении с поверхностью твердого вещества или жидкости, температура которых ниже температуры насыщения, пар конденсируется. Можно различать три вида конденсации на твердой поверхности. На поверхностях, хорошо смачиваемых жидкостью, наблюдается пленочная конденсация, при которой конденсат растекается по поверхности сплошной пленкой. На несмачиваемой поверхности происходит капельная конденсация, при которой конденсат выпадает в виде отдельных капель. При смешанной конденсации поверхность теплообмена частично покрывается пленкой конденсата, а на части ее образуются капли. При капельной конденсации вследствие отсутствия термического сопротивления конденсата теплоотдача более интенсивна, чем при пленочной.
Продукты разделения воздуха (азот, кислород, аргон) принадлежат к числу веществ, хорошо смачивающих металлические поверхности труб конденсаторов и других аппаратов. Поэтому в аппаратах воздухоразделительных установок происходит пленочная конденсация, применительно к которой и рассматриваем процесс теплообмена. Можно считать доказанным, что основным термическим сопротивлением, определяющим интенсивность процесса, является термическое сопротивление жидкой пленки стекающего конденсата. Такое положение существенно упрощает рассмотрение вопроса и сводит его к исследованию поведения пленки конденсата.
(1) |
После опубликования работы Нуссельта рядом авторов были проведены экспериментальные исследования теплоотдачи при конденсации паров, а также рассмотрено влияние на теплоотдачу волнового характера стекания пленки. В этих работах в большинстве случаев получались коэффициенты теплоотдачи больше подсчитанных по формуле 1 примерно на 20%. Для длинных труб при достаточно больших тепловых нагрузках получались даже качественные расхождения – коэффициенты теплоотдачи переставали зависеть от тепловых нагрузок вследствие турбулизации стекания пленки. Исследования процесса теплоотдачи при конденсации технического азота, кислорода и аргона, в зависимости от тепловой нагрузки и длины труб позволили установить три различных режима.
При малой интенсивности процесса (Re' ≤ 8·10-14 q/v2 ) визуально было обнаружено, что на поверхности теплообмена высаживаются мельчайшие кристаллы твердых примесей (Н2О, СО2 и др.), которые обычно в небольшом количестве содержатся в жидких чистых продуктах разделения воздуха. Налет кристаллов на поверхности труб вызывает торможение, а следовательно, и утолщение стекающей пленки конденсата, что приводит к ухудшению теплоотдачи от конденсирующихся паров к стенке. Для этого случая:
(2) |
При тепловых нагрузках, для которых Re' ≥ 8·10-14 q/v2 кристаллы с теплообменной поверхности смываются стекающей жидкостью.
При отсутствии влияния на теплообмен налета кристаллов, высаживающихся на теплообменной поверхности, установленная экспериментально зависимость для теплоотдачи аналогична формуле Нуссельта (93) и отличается от последней лишь величиной коэффициента пропорциональности. В формулу (93) входит коэффициент, найденный теоретически и равный 0,925. По данным экспериментов, коэффициент пропорциональности С1 = 1,0÷1,12. При этом, чем выше число Re', тем больше С1.
Принимая С1 = 1,0 при ламинарном стекании пленки конденсата по чистой теплообменной поверхности, можно рекомендовать следующую расчетную формулу:
(3) |
При больших тепловых нагрузках, когда число Re' больше некоторой критической величины, появляется значительный молярный перенос тепла, и теплоотдача практически не зависит от числа Рейнольдса.
В результате проведенных исследований определено, что
Re’кр = 6,22*10-5 Ga0,24 (4)
Исходя из уравнений (3) и (4) и наибольшей величины коэффициента пропорциональности С1 = 1,12 в условиях низких температур, для расчета а при конденсации с большими тепловыми нагрузками, можно рекомендовать следующее выражение:
Nu = 0,013 Ga0,413 (5)
Присутствие неконденсирующихся примесей даже в малых количествах резко снижает коэффициенты теплоотдачи. Это является результатом блокирования поверхности пленки стекающего конденсата неконденсирующимися газами. Скорость подвода рабочих паров к стенке, а следовательно, и скорость теплоотдачи начинают ограничиваться интенсивностью диффузии через образовавшийся газовый слой. Опыт эксплуатации кислородных установок показывает, что присутствие, например, неоно-гелиевой смеси в азоте резко снижает производительность конденсаторов азота. Поэтому в верхней части всех конденсаторов воздухоразделительных установок имеются продувочные штуцеры для отвода неконденсирующихся компонентов воздуха. Качественное представление о том, какое влияние на теплообмен оказывает присутствие неконденсирующихся примесей может дать график (рис. 4), показывающий изменение коэффициента теплоотдачи при конденсации водяного пара в зависимости от количества примеси воздуха.
Рис. 4. Опытные значения коэффициента теплоотдачи при конденсации водяного пара на горизонтальной трубе в присутствии воздуха
Влияние перегрева паров на теплоотдачу экспериментально и теоретически исследовалось рядом авторов. Было установлено, что если температура охлаждающей поверхности ниже температуры насыщения при данном давлении, то, несмотря на наличие перегрева паров в ядре потока, на стенке происходит конденсация; ядро потока и пленка конденсата обмениваются теплом, вследствие чего ядро охлаждается.
Состояние поверхности стенки также влияет на теплоотдачу при пленочной конденсации. Однако общего метода количественной оценки этого влияния нет, поэтому оно учитывается очень неточно на основе отдельных опытных рекомендаций.
Дата добавления: 2015-08-11; просмотров: 1086;