Занятие 28. Передовые технологии ГВС. Асинхронный режим передачи
Гетерогенность - неотъемлемое качество любой крупной вычислительной сети, и на согласование разнородных компонентов системные интеграторы и администраторы тратят большую часть своего времени. Поэтому любое средство, сулящее перспективу уменьшения неоднородности сети, привлекает пристальный интерес сетевых специалистов. Технология асинхронного режима передачи (Asynchronous Transfer Mode, АТМ) разработана как единый универсальный транспорт для нового поколения сетей с интеграцией услуг, которые называются широкополосными сетями ISDN (Broadband-ISDN, B-ISDN).
По планам разработчиков единообразие, обеспечиваемое АТМ, будет состоять в том, что одна транспортная технология сможет обеспечить несколько перечисленных ниже возможностей.
- Передачу в рамках одной транспортной системы компьютерного и мультимедийного (голос, видео) трафика, чувствительного к задержкам, причем для каждого вида трафика качество обслуживания будет соответствовать его потребностям.
- Иерархию скоростей передачи данных, от десятков мегабит до нескольких гагабит в секунду с гарантированной пропускной способностью для ответственных приложений.
- Общие транспортные протоколы для локальных и глобальных сетей.
- Сохранение имеющейся инфраструктуры физических каналов или физических протоколов.
- Взаимодействие с унаследованными протоколами локальных и глобальных сетей: IP, SNA, Ethernet, ISDN.
Главная идея технологии асинхронного режима передачи была высказана достаточно давно - этот термин ввела лаборатория Bell Labs еще в 1968 году. Основной разрабатываемой технологией тогда была технология TDM с синхронными методами коммутации, основанными на порядковом номере байта в объединенном кадре. Главный недостаток технологии TDM, которую также называют технологией синхронной передачи STM (Synchronous Transfer Mode), заключается в невозможности перераспределять пропускную способность объединенного канала между подканалами. В те периоды времени, когда по подканалу не передаются пользовательские данные, объединенный канал все равно передает байты этого подканала, заполненные нулями.
Попытки загрузить периоды простоя подканалов приводят к необходимости введения заголовка для данных каждого подканала. В промежуточной технологии STDM (Statistical TDM), которая позволяет заполнять периоды простоя передачей пульсаций трафика других подканалов, действительно вводятся заголовки, содержащие номер подканала. Данные при этом оформляются в пакеты, похожие по структуре на пакеты компьютерных сетей. Наличие адреса у каждого пакета позволяет передавать его асинхронно, так как местоположение его относительно данных других подканалов уже не является его адресом. Асинхронные пакеты одного подканала вставляются в свободные тайм - слоты другого подканала, но не смешиваются с данными этого подканала, так как имеют собственный адрес.
Технология АТМ совмещает в себе подходы двух технологий - коммутации пакетов и коммутации каналов. От первой она взяла на вооружение передачу данных в виде адресуемых пакетов, а от второй - использование пакетов небольшого фиксированного размера, в результате чего задержки в сети становятся более предсказуемыми. С помощью техники виртуальных каналов, предварительного заказа параметров качества обслуживания канала и приоритетного обслуживания виртуальных каналов с разным качеством обслуживания удается добиться передачи в одной сети разных типов трафика без дискриминации. Хотя сети ISDN также разрабатывались для передачи различных видов трафика в рамках одной сети, голосовой трафик явно был для разработчиков более приоритетным. Технология АТМ с самого начала разрабатывалась как технология, способная обслуживать все виды трафика в соответствии с их требованиями.
Службы верхних уровней сети B-ISDN должны быть примерно такими же, что и у сети ISDN - это передача факсов, распространение телевизионного изображения, голосовая почта, электронная почта, различные интерактивные службы, например проведение видеоконференций. Высокие скорости технологии АТМ создают гораздо больше возможностей для служб верхнего уровня, которые не могли быть реализованы сетями ISDN - например, для передачи цветного телевизионного изображения необходима полоса пропускания в районе 30 Мбит/с. Технология ISDN такую скорость поддержать не может, а для АТМ она не составляет больших проблем.
Разработку стандартов АТМ осуществляет группа организаций под названием АТМ Forum под эгидой специального комитета IEEE, а также комитеты ITU-T и ANSI. АТМ - это очень сложная технология, требующая стандартизации в самых различных аспектах, поэтому, хотя основное ядро стандартов было принято в 1993 году, работа по стандартизации активно продолжается. Оптимизм внушает тот факт, что в АТМ Forum принимают участие практически все заинтересованные стороны - производители телекоммуникационного оборудования, производители оборудования локальных сетей, операторы телекоммуникационных сетей и сетевые интеграторы. До широкого распространения технологии АТМ по оценкам специалистов должно пройти еще 5-10 лет. Такой прогноз связан не только с отсутствием полного набора принятых стандартов, но и с невозможностью быстрой замены уже установленного дорогого оборудования, которое хотя и не так хорошо, как хотелось бы, но все же справляется со своими обязанностями. Кроме того, многое еще нужно сделать в области стандартизации взаимодействия АТМ с существующими сетями, как компьютерными, так и телефонными.
Сеть АТМ имеет классическую структуру крупной территориальной сети - конечные станции соединяются индивидуальными каналами с коммутаторами нижнего уровня, которые в свою очередь соединяются с коммутаторами более высоких уровней. Коммутаторы АТМ пользуются 20-байтными адресами конечных узлов для маршрутизации трафика на основе техники виртуальных каналов. Для частных сетей АТМ определен протокол маршрутизации PNNI (Private NNI), с помощью которого коммутаторы могут строить таблицы маршрутизации автоматически. В публичных сетях АТМ таблицы маршрутизации могут строиться администраторами вручную, как и в сетях Х.25, или могут поддерживаться протоколом PNNI.
Коммутация пакетов происходит на основе идентификатора виртуального канала (Virtual Channel Identifier, VCI), который назначается соединению при его установлении и уничтожается при разрыве соединения. Адрес конечного узла АТМ, на основе которого прокладывается виртуальный канал, имеет иерархическую структуру, подобную номеру в телефонной сети, и использует префиксы, соответствующие кодам стран, городов, сетям поставщиков услуг и т. п., что упрощает маршрутизацию запросов установления соединения, как и при использовании агрегированных IP-адресов в соответствии с техникой CIDR.
Виртуальные соединения могут быть постоянными (Permanent Virtual Circuit, PVC) и коммутируемыми (Switched Virtual Circuit, SVC). Для ускорения коммутации в больших сетях используется понятие виртуального пути - Virtual Path, который объединяет виртуальные каналы, имеющие в сети АТМ общий маршрут между исходным и конечным узлами или общую часть маршрута между некоторыми двумя коммутаторами сети. Идентификатор виртуального пути (Virtual Path Identifier, VPI) является старшей частью локального адреса и представляет собой общий префикс для некоторого количества различных виртуальных каналов. Таким образом, идея агрегирования адресов в технологии АТМ применена на двух уровнях - на уровне адресов конечных узлов (работает на стадии установления виртуального канала) и на уровне номеров виртуальных каналов (работает при передаче данных по имеющемуся виртуальному каналу).
Соединения конечной станции АТМ с коммутатором нижнего уровня определяются стандартом UNI (User Network Interface). Спецификация UNI определяет структуру пакета, адресацию станций, обмен управляющей информацией, уровни протокола АТМ, способы установления виртуального канала и способы управления трафиком.
В настоящее время принята версия UNI 4.0, но наиболее распространенной версией, поддерживаемой производителями оборудования, является версия UNI 3.1.
Стандарт АТМ не вводит свои спецификации на реализацию физического уровня. Здесь он основывается на технологии SDH/SONET, принимая ее иерархию скоростей. В соответствии с этим начальная скорость доступа пользователя сети - это скорость ОС-3 155 Мбит/с. Организация АТМ Forum определила для АТМ не все иерархии скоростей SDH, а только скорости ОС-3 и ОС-12 (622 Мбит/с). На скорости 155 Мбит/с можно использовать не только волоконно-оптический кабель, но и неэкранированную витую пару категории 5. На скорости 622 Мбит/с допустим только волоконно-оптический кабель, причем как SMF, так и MMF.
Имеются и другие физические интерфейсы к сетям АТМ, отличные от SDH/ SONET. К ним относятся интерфейсы Т1/Е1 и ТЗ/ЕЗ, распространенные в глобальных сетях, и интерфейсы локальных сетей - интерфейс с кодировкой 4В/5В со скоростью 100 Мбит/с (FDDI) и интерфейс со скоростью 25 Мбит/с, предложенный компанией IBM и утвержденный АТМ Forum. Кроме того, для скорости 155,52 Мбит/с определен так называемый «cell-based» физический уровень, то есть уровень, основанный на ячейках, а не на кадрах SDH/SONET. Этот вариант физического уровня не использует кадры SDH/SONET, а отправляет по каналу связи непосредственно ячейки формата АТМ, что сокращает накладные расходы на служебные данные, но несколько усложняет задачу синхронизации приемника с передатчиком на уровне ячеек.
Все перечисленные выше характеристики технологии АТМ не свидетельствуют о том, что это некая «особенная» технология, а скорее представляют ее как типичную технологию глобальных сетей, основанную на технике виртуальных каналов. Особенности же технологии АТМ лежат в области качественного обслуживания разнородного трафика и объясняются стремлением решить задачу совмещения в одних и тех же каналах связи и в одном и том же коммуникационном оборудовании компьютерного и мультимедийного трафика таким образом, чтобы каждый тип трафика получил требуемый уровень обслуживания и не рассматривался как «второстепенный».
Трафик вычислительных сетей имеет ярко выраженный асинхронный и пульсирующий характер. Компьютер посылает пакеты в сеть в случайные моменты времени, по мере возникновения в этом необходимости. При этом интенсивность посылки пакетов в сеть и их размер могут изменяться в широких пределах - например, коэффициент пульсаций трафика (отношения максимальной мгновенной интенсивности трафика к его средней интенсивности) протоколов без установления соединений может доходить до 200, а протоколов с установлением соединений - до 20. Чувствительность компьютерного трафика к потерям данных высокая, так как без утраченных данных обойтись нельзя и их необходимо восстановить за счет повторной передачи.
Дата добавления: 2015-08-11; просмотров: 892;