Тема 1.14. Работа и мощность
Иметь представление о работе силы при прямолинейном и криволинейном перемещениях, о мощности полезной и затраченной, о коэффициенте полезного действия.
Знать зависимости для определения силы трения, формулы для расчета работы и
мощности при поступательном и вращательном движениях.
Уметь рассчитывать работу и мощность с учетом потерь на трение и сил инерции.
Работа
Для характеристики действия силы на некотором перемещении точки ее приложения вводят понятие «работа силы».
Работа служит мерой действия силы, работа — скалярная величина.
Работа постоянной силы на прямолинейном пути
Работа силы в общем случае численно равна произведению модуля силы на длину пройденного пути и на косинус угла между направлением силы и направлением перемещения (рис. 15.1):
W = FS cos α
Единицы измерения работы:
1 Дж (джоуль) 1 Н-м;
1 кДж (килоджоуль) — 103 Дж.
Рассмотрим частные случаи.
1. Силы, совпадающие с направлением перемещения, называются движущими силами. Направление вектора силы совпадает с направлением перемещения (рис. 15.2).
В этом случае α = 0° (соs α = 1). Тогда W = FS > 0.
2. Силы, перпендикулярные направлению перемещения, работы не производят (рис. 15.3).
Сила F перпендикулярна направлению перемещения, α = 90° (соs α = 0); W = 0.
3. Силы, направленные в обратную от направления перемещения сторону, называются силами сопротивления (рис. 15.4).
Сила F направлена в обратную от перемещения S сторону.
В этом случае α = 180° (соs α = —1), следовательно, W = —FS < 0.
Движущие силы увеличивают модуль скорости, силы сопротивления уменьшают скорость.
Таким образом, работа может быть положительной и отрицательной в зависимости от направления силы и скорости.
Работа постоянной силы на криволинейном пути
Пусть точка М движется по дуге окружности и сила F составляет некоторый угол а с касательной к окружности (рис. 15.5).
Вектор силы можно разложить на две составляющие
F = Ft + Fn
Используя принцип независимости действия сил, определим работу каждой из составляющих силы отдельно:
W(Ft) = Ft ΔŠ ; W(Fn) = Fn ΔŠ
где ΔŠ = M1Μ2 — пройденный путь.,
ΔŠ = φr
Нормальная составляющая силы Fп всегда направлена перпендикулярно перемещению и, следовательно, работы не производит:
W (Fп) = 0.
При перемещении по дуге обе составляющие силы разворачиваются вместе с точкой М. Таким образом, касательная составляющая силы всегда совпадает по направлению с перемещением.
Будем иметь: W(Ft) = Ft φr.
Касательную силу Ft обычно называют окружной силой.
Работа при криволинейном пути — это работа окружной силы:
W(F) = W(Ft)
Произведение окружной силы на радиус называют вращающим
моментом:
Мвр = Ft r
Работа силы, приложенной к вращающемуся телу, равна произведению вращающего момента на угол поворота:
W(F) = Mврφ
Дата добавления: 2015-08-08; просмотров: 2508;