Центра скоростей
Скорость любой точки тела можно определять с помощью мгновенного центра скоростей. При этом сложное движение представляют в виде цепи вращений вокруг разных центров.
Задача сводится к определению положения мгновенного центра 1 вращений (скоростей) (рис. 12.4).
Мгновенным центром скоростей (МЦС) является точка на плоскости, абсолютная скорость которой в данный момент равна нулю.
Вокруг этой точки тело совершает поворот со скоростью ω.
Скорость точки А в данный момент равна
vA = ωOA
т.к. vA — линейная скорость точки А, вращающейся вокруг МЦС.
Существуют три способа определения положения мгновенного центра скоростей.
Первый способ. Известна скорость одной точки тела vA и угловая скорость вращения тела ω (рис. 12.5).
Точку О находим на перпендикуляре к вектору скорости vA Соединяем точку О с точкой В, замеряем расстояние ОВ
Второй способ. Известны скорости двух точек тела vA и vВ , и они не параллельны (рис. 12.6).
Проводим из точек А и В два перпендикуляра к известным векторам скоростей.
На пересечении перпендикуляров находим МЦС. Далее можно
найти скорость любой точки С.
Третий способ. Известны скорости двух точек тела, и они параллельны ( vA || vВ) (рис. 12.7).
Соединяем концы векторов, МЦС находится на пересечении линии, соединяющей концы векторов с линией АВ (рис. 12.7). При поступательном движении тела (рис. 12.7в) МЦС отсутствует.
ЛЕКЦИЯ 13
Тема 1.12. Основные понятия и аксиомы динамики.
Дата добавления: 2015-08-08; просмотров: 676;