Отличие растительной клетки от животной 1 страница

 

Растительная клетка Животная клетка
1. Растительная клетка крупнее животной 1. Форма клеток более разнообразная (нервные, мерцательные, кубические)
2. Оболочка растительной клетки состоит из целлюлозы 2. В состав оболочки животной клетки входят органические вещества
3. Растительная клетка имеет пластиды (хлоропласты, хромопласты, лейкопласты) 3. Пластиды отсутствуют
4. Происходит фотосинтез посредством световой энергии, в результате чего образуются органические вещества 4. Органические вещества синтезируются самостоятельно

 

2. Основные химические компоненты протопласта. Органические вещества клетки. Белки – биополимеры, образованные аминокислотами, составляют 40-50% сухой массы протопласта. Они участвуют в построении структуры и функциях всех органелл. В химическом отношении белки подразделяются на простые (протеины) и сложные (протеиды). Сложные белки могут образовывать комплексы с липидами – липопротеиды, с углеводами – гликопротеиды, с нуклеиновыми кислотами – нуклеопротеиды и т.д.

Белки входят в состав ферментов (энзимов), регулирующих все жизненно важные процессы.

Нуклеиновые кислоты – ДНК и РНК – важнейшие биополимеры протопласта, содержание которых составляет 1-2 % от его массы. Это вещества хранения и передачи наследственной информации. ДНК в основном содержится в ядре, РНК – в цитоплазме и ядре. ДНК содержит углеводный компонент дезоксирибозу, а РНК – рибонуклеиновую кислоту. Нуклеиновые кислоты – полимеры, мономерами которых являются нуклеотиды. Нуклеотид состоит из азотистого основания, сахара рибозы или дезоксирибозы и остатка фосфорной кислоты. Нуклеотиды бывают пяти типов в зависимости от азотистого основания. Молекула ДНК представлена двумя полинуклеотидными спиральными цепями, молекула РНК – одной.

Липиды – жироподобные вещества, содержащиеся в количестве 2-3 %. Это запасные энергетические вещества, входящие также в состав клеточной стенки. Жироподобные соединения покрывают тонким слоем листья растений, не давая им намокать во время обильных дождей. Протопласт растительной клетки содержит простые (жирные масла) и сложные липиды (липоиды, или жироподобные вещества).

Углеводы. Углеводы входят в состав протопласта каждой клетки в виде простых соединений (растворимых в воде сахаров) и сложных углеводов (нерастворимых или слаборастворимых) – полисахаридов. Глюкоза (С6Н12О6) – моносахарид. Особенно много его в сладких плодах, он играет роль в образовании полисахаридов, легко растворяется в воде. Фруктоза, или плодовый сахар, - моносахарид, имеющий такую же формулу, но по вкусу значительно слаще. Сахароза (С12Н22О11) – дисахарид, или тростниковый сахар; в больших количествах содержится в сахарном тростнике и корнеплодах сахарной свеклы. Крахмал и целлюлоза – полисахариды. Крахмал – резервный энергетический полисахарид, целлюлоза – основной компонент клеточной стенки. В клеточном соке корнеклубней георгина, корнях цикоря, одуванчика, девясила и других сложноцветных встречается еще один полисахарид – инулин.

Из органических веществ в клетках также содержатся витамины – физиологически активные органические соединения, контролирующие ход обмена веществ, гормоны, регулирующие процессы роста и развития организма, фитонциды – жидкие или летучие вещества, выделяемые высшими растениями.

Неорганические вещества в клетке. Клетки включают от 2 до 6 % неорганических веществ. В составе клетки обнаружено более 80 химических элементов. По содержанию элементы, входящие в состав клетки, можно разделить на три группы.

Макроэлементы. На их долю приходится около 99 % всей массы клетки. Особенно высока концентрация кислорода, углерода, азота и водорода. Их доля составляет 98 % всех макроэлементов. К оставшимся 2 % относятся - калий, магний, натрий, кальций, железо, сера, фосфор, хлор.

Микроэлементы. К ним принадлежат преимущественно ионы тяжелых металлов, входящие в состав ферментов, гормонов и других жизненно важных веществ. Содержание их в клетке колеблется от 0,001 до 0,000001 %. К микроэлементам относятся бор, кобальт, медь, молибден, цинк, ванадий, йод, бром и др.

Ультрамикроэлементы. Доля их не превышает 0,000001 %. К ним относятся уран, радий, золото, ртуть, бериллий, цезий, селен и другие редкие металлы.

Вода – составная часть любой клетки, это основная среда организма, принимающая непосредственное участие во многих реакциях. Вода - источник кислорода, выделяемого при фотосинтезе, и водорода, который используется для восстановления продуктов ассимиляции диоксида углерода. Вода – растворитель. Различают гидрофильные вещества (от греч. «hydros» - вода и «phileo» - люблю), хорошо растворимые в воде, и гидрофобные (греч. «phobos» - боязнь) – вещества, трудно или совсем не растворимые в воде (жиры, жироподобные вещества и др.). Вода – основное средство передвижения вещества в организме (восходящие и нисходящие токи растворов по сосудам растений) и в клетке.

3. Цитоплазма. В протопласте большую часть занимает цитоплазма с органоидами, меньшую - ядро с ядрышком. Цитоплазма имеет плазматические оболочки: 1) плазмалемму – наружную мембрану (оболочку); 2) тонопласт – внутреннюю мембрану, соприкасающуюся с вакуолью. Между ними расположена мезоплазма – основная масса цитоплазмы. В мезоплазму входят: 1) гиалоплазма (матрикс) – бесструктурная часть мезоплазмы; 2) эндоплазматическая сеть (ретикулум); 3) аппарат Гольджи; 4) рибосомы; 5) митохондрии (хондриосомы); 6) сферосомы; 7) лизосомы; 8) пластиды.

Цитоплазма представляет собой густой прозрачный коллоидный раствор. В зависимости от выполняемых физиологических функций каждая клетка имеет свой химический состав. Основу цитоплазмы составляет ее гиалоплазма, или матрикс, роль которой заключается в объединении всех клеточных структур в единую систему и обеспечении взаимодействия между ними. Цитоплазма имеет щелочную реакцию среды и на 60-90 % состоит из воды, в которой растворены различные вещества: до 10-20 % белков, 2-3 % жироподобных веществ, 1,5 % органических и 2-3 % неорганических соединений. В цитоплазме осуществляется важнейший физиологический процесс – дыхание, или гликолиз, в результате которого происходит расщепление глюкозы без доступа кислорода в присутствии ферментов с освобождением энергии и образованием воды и диоксида углерода. Цитоплазма пронизана мембранами – тончайшими пленками фосфолипидного строения. Мембраны образуют эндоплазматическую сеть – систему мелких канальцев и полостей, образующих сеть. Эндоплазматическая сеть называется шероховатой (гранулярной), если на мембранах канальцев и полостей находятся рибосомы или группы рибосом, которые выполняют синтез белка. Если эндоплазматическая сеть лишена рибосом, то называется гладкой (агранулярной). На мембранах гладкой эндоплазматической сети синтезируются липиды и углеводы.

Аппарат Гольджи – система уплощенных цистерн, лежащих параллельно и ограниченных двойными мембранами. От концов цистерн отшнуровываются пузырьки, через которые удаляются конечные или ядовитые продукты жизнедеятельности клетки, обратно же в диктиосомы поступают вещества, необходимые для синтеза сложных углеводов (полисахаридов) на построение клеточной стенки. Также комплекс Гольджи участвует в формировании вакуолей. Одно из важнейших биологических свойств цитоплазмы – циклоз (способность к движению), интенсивность которого зависит от температуры, степени освещения, снабжения кислородом и других факторов.

Рибосомы – мельчайшие частицы (от 17 до 23 нм), образованные рибонуклеопротеидами и молекулами белка. Они присутствуют в цитоплазме, ядре, митохондриях, пластидах; бывают одиночными и групповыми (полисомы). Рибосомы – центры синтеза белка.

Митохондрии – «энергетические станции» всех эукариотических клеток. Форма их разнообразна: от округлых до цилиндрических и даже палочковидных телец. Численность их – от нескольких десятков до нескольких тысяч в каждой клетке.Размеры не более 1 мкм. Снаружи митохондрии окружены двухмембранной оболочкой. Внутренняя мембрана представлена в виде пластинчатых выростов – крист. Размножаются путем деления.

Основная функция митохондрий – участие в дыхании клетки с помощью ферментов. В митохондриях в результате реакции окислительного фосфорилирования синтезируются богатые энергией молекулы аденозинтрифосфорной кислоты (АТФ). Механизм окислительного фосфорилирования был открыт английским биохимиком П.Митчелом в 1960 г.

Пластиды. Эти органеллы, характерные только для растений, встречаются во всех живых растительных клетках. Пластиды – относительно крупные (4-10 мкм) живые растительные тельца разной формы и окраски. Различают три типа пластид: 1) хлоропласты, окрашенные в зеленый цвет; 2) хромопласты, окрашенные в желто-красные цвета; 3) лейкопласты, не имеющие окраски.

Хлоропласты встречаются во всех зеленых органах растений. У высших растений пластид в клетках несколько десятков, у низших (водорослей) – 1-5. Они крупные, разнообразны по форме. В хлоропластах содержится до 75 % воды, белки, липиды, нуклеиновые кислоты, ферменты и красящие вещества – пигменты. Для образования хлорофилла необходимы определенные условия – свет, соли железа и магния в почве. От цитоплазмы хлоропласт отделен двойной мембранной оболочкой; тело его состоит из бесцветной мелкозернистой стромы.Строма пронизана параллельно расположенными пластинками – ламеллами, дисками. Диски собраны в стопки – граны. Основная функция хлоропластов – фотосинтез.

Хромопласты встречаются в корнеплодах моркови, плодах многих растений (облепиха, шиповник, рябина и др.), в зеленых листьях шпината, крапивы, в цветках (розы, гладиолусы, календула), окраска которых зависит от присутствия в них пигментов каротиноидов: каротина – оранжево-красного цвета и ксантофилла – желтого цвета.

Лейкопласты – бесцветные пластиды, пигменты отсутствуют. Они представляют собой белковые вещества в виде шаровидных, веретонообразных зернышек, концентрирующихся вокруг ядра. В них осуществляется синтез и накопление запасных питательных веществ, в основном крахмала, белков и жиров. Лейкопласты находятся в цитоплазме, эпидерме, молодых волосках, подземных органах растений и в тканях зародыша семени.

Пластиды могут переходить из одного вида в другой.

4. Ядро. Ядро – одно из главных органелл эукариотической клетки. В растительной клетке одно ядро. В ядре хранится и воспроизводится наследственная информация. Размеры ядра у разных растений разные, от 2-3 до 500 мкм. Форма чаще округлая или чечевицеобразная. В молодых клетках ядро крупнее, чем в старых, и занимает центральное положение. Ядро окружено двойной мембраной с порами, регулирующими обмен веществ. Наружная мембрана объединена с эндоплазматической сетью. Внутри ядра заключен ядерный сок – кариоплазма с хроматином, ядрышками и рибосомами. Хроматин – бесструктурная среда из особых нуклеопротеидных нитей, богатых ферментами. В хроматине сосредоточена основная масса ДНК. В процессе клеточного деления хроматин превращается в хромосомы – носители генов. Хромосомы образованы двумя одинаковыми нитями ДНК – хроматидами. Каждая хромосома в середине имеет перетяжку – центромеру. Число хромосом у разных растений неодинакова: от двух до нескольких сотен. Каждый вид растений имеет постоянный набор хромосом. В хромосомах синтезируются нуклеиновые кислоты, необходимые для образования белков. Совокупность количественных и качественных признаков хромосомного набора клетки называют кариотипом. Изменение числа хромосом происходит в результате мутаций. Наследственное кратное увеличение числа хромосом у растений получило название полиплоидии.

Ядрышки – сферические, довольно плотные тельца диаметром 1-3 мкм. В ядре содержатся 1-2, иногда несколько ядрышек. Ядрышко является основным носителем РНК ядра. Основная функция ядрышка – синтез рРНК.

Деление ядра и клетки. Размножение клеток происходит путем их деления. Период между двумя последовательными делениями составляет клеточный цикл. При делении клеток наблюдается рост растения и увеличение его общей массы. Существуют три способа деления клеток: митоз, или кариокинез (непрямое деление), мейоз (редукционное деление) и амитоз (прямое деление).

Митоз характерен для всех клеток органов растений, кроме половых. В результате митоза растет и увеличивается общая масса растения. Биологическое значение митоза заключается в строго одинаковом распределении редуплицированных хромосом между дочерними клетками, что обеспечивает образование генетически равноценных клеток. Митоз впервые был описан русским ботаником И.Д.Чистяковым в 1874 г. В процессе митоза выделяют несколько фаз: профазу, метафазу, анафазу и телофазу. Промежуток между двумя делениями клетки называется интерфазой. В интерфазе осуществляется общий рост клетки, редупликация органоидов, синтез ДНК, формирование и подготовка структур к началу митотического деления.

Профаза – самая длительная фаза митоза. В профазе хромосомы становятся видны в световой микроскоп. В профазе ядро претерпевает два изменения: 1. стадия плотного клубка; 2. стадия рыхлого клубка. В стадии плотного клубка хромосомы становятся видны в световой микроскоп, раскручиваются из клубка или из спирали и вытягиваются. Каждая хромосома состоит из двух хроматид, расположенных параллельно друг другу. Постепенно они укорачиваются, утолщаются и обособляются, исчезают ядерная оболочка и ядрышко. Ядро увеличивается в объеме. На противоположных полюсах клетки образуется ахроматиновое веретено – веретено деления, состоящее из неокрашивающихся нитей, протягивающихся от полюсов клетки (стадия рыхлого клубка).

В метафазе заканчивается формирование веретена деления, хромосомы приобретают определенную форму того или иного вида растения и собираются в одной плоскости – экваториальной, на месте бывшего ядра. Ахроматиновое веретено постепенно сокращается, и хроматиды начинают отделяться друг от друга, оставаясь связанными в области центромеры.

В анафазе происходит деление центромеры. Образовавшиеся сестринские центромеры и хроматиды направляются к противоположным полюсам клетки. Самостоятельные хроматиды становятся дочерними хромосомами, и, следовательно, их будет точно столько, сколько в материнской клетке.

Телофаза – последняя фаза деления клетки, когда дочерние хромосомы достигают полюсов клетки, постепенно исчезает веретено деления, хромосомы удлиняются и становятся плохо заметными в световой микроскоп, в экваториальной плоскости формируется срединная пластинка. Постепенно образуется клеточная стенка и одновременно – ядрышки и ядерная оболочка вокруг двух новых ядер (1. стадия рыхлого клубка; 2. стадия плотного клубка). Образовавшиеся клетки вступают в очередную интерфазу.

Длительность митоза примерно 1-2 часа. Процесс от момента образования срединной пластинки до формирования новой клетки называют цитокинезом. Дочерние клетки в два раза мельче материнских, но затем они растут и достигают размеров материнской клетки.

Мейоз. Впервые был открыт русским ботаником В.И.Беляевым в 1885 г. Этот тип деления клеток связан с образованием спор и гамет, или половых клеток, имеющих гаплоидное число хромосом (n). Сущность его заключается в уменьшении (редукции) числа хромосом в 2 раза в каждой образовавшейся после деления клетке. Мейоз состоит из двух следующих друг за другом делений. Мейоз в отличие от митоза состоит из двух видов деления: редукционного (увеличение); экватоционного (митотическое деление). Редукционное деление происходит при первом делении, которое состоит из нескольких фаз: профаза I, метафаза I, анафаза I, телофаза I. В экватоционном делении различают: профаза II, метафаза II, анафаза II, телофаза II. В редукционном делении существует интерфаза.

Профаза I. Хромосомы имеют форму длинных двойных нитей. Хромосома состоит из двух хроматид. Это стадия лептонемы. Затем гомологичные хромосомы притягиваются друг к другу, образуя пары – биваленты. Эта стадия называется зигонемой. Спаренные гомологичные хромосомы состоят из четырех хроматид, или тетрад. Хроматиды могут быть расположены параллельно друг другу либо перекрещиваться между собой, обмениваясь участками хромосом. Эта стадия получила название кроссинговера. В следующей стадии профазы I – пахинеме, хромосомные нити утолщаются. В следующей стадии – диплонеме – тетрады хроматид укорачиваются. Конъюгирующие хромосомы сближаются друг с другом так, что становятся неразличимыми. Исчезают ядрышко и ядерная оболочка, формируется ахроматиновове веретено. В последней стадии – диакинезе – биваленты направляются к экваториальной плоскости.

Метафаза I. Биваленты располагаются по экватору клетки. Каждая хромосома прикреплена ахроматиновым веретеном к центромере.

Анафаза I. Происходит сокращение нитей ахроматинового веретена, и гомологичные хромосомы в каждом биваленте расходятся к противоположным полюсам, причем на каждом полюсе окажется половинное число хромосом материнской клетки, т.е. происходит уменьшение (редукция) числа хромосом и образуются два гаплоидных ядра.

Телофаза I. Эта фаза слабо выражена. Хромосомы деконденсируются; ядро принимает вид интерфазного, но в нем не происходит удвоения хромосом. Эта стадия называется интеркинезом. Она непродолжительная, у некоторых видов отсутствует, и тогда клетки сразу после телофазы I переходят в профазу II.

Второе мейотическое деление происходит по типу митоза.

Профаза II. Наступает быстро, вслед за телофазой I. Видимых изменений в ядре не происходит и сущность этой стадии заключается в том, что происходит рассасывание ядерных оболочек и появление четырех полюсов деления. Возле каждого ядра возникает два полюса.

Метафаза II. Удвоенные хромосомы выстраиваются у своих экваторов и стадия носит название стадии материнской звезды или экваториальной пластинки. От каждого полюса деления отходят нити веретена деления, которые прикрепляются к хроматидам.

Анафаза II. Полюса делений натягивают нити веретена деления, которые начинают рассасываться и натягивать удвоенные хромосомы. Наступает момент разрыва хромосом и расхождения их к четырем полюсам.

Телофаза II. Вокруг каждого полюса у хромосом происходит стадия рыхлого клубка и стадия плотного клубка. После чего рассасываются центриоли и вокруг хромосом восстанавливаются ядерные оболочки и ядрышки. После чего делится и цитоплазма.

Итогом мейоза является образование четырех дочерних клеток из одной материнской с гаплоидным набором хромосом.

Для каждого вида растений характерно постоянное число хромосом и постоянная их форма. Среди высших растений часто встречается явление полиплоидии, т.е. многократное повторение в ядре одного набора хромосом (триплоиды, тетераплоиды и т.д.).

В старых и больных клетках растений можно наблюдать прямое (амитоз) деление ядра путем простой его перетяжки на две части с произвольным количеством ядерного вещества. Впервые это деление было описано Н.Железновым в 1840 г.

 

5. Производные протопласта. К производным протопласта относятся: 1) вакуоли; 2) включения; 3) клеточная стенка; 4) физиологически активные вещества: ферменты, витамины, фитогормоны и др.; 5) продукты обмена веществ.

Вакуоли – полости в протопласте – производные эндоплазматической сети. Они ограничены мембраной – тонопластом и заполнены клеточным соком. Клеточный сок накапливается в каналах эндоплазматической сети в виде капелек, которые затем сливаются, образуя вакуоли. В молодых клетках содержится много мелких вакуолей, в старой клетке обычно присутствует одна крупная вакуоль. В клеточном соке растворены сахара (глюкоза, фруктоза, сахароза, инулин), растворимые белки, органические кислоты (щавелевая, яблочная, лимонная, винная, муравьиная, уксусная и др.), разнообразные гликозиды, дубильные вещества, алкалоиды (атропин, папаверин, морфин и др.), ферменты, витамины, фитонциды и др. В клеточном соке многих растений имеются пигменты – антоциан (красный, синий, фиолетовый цвет разных оттенков), антохлоры (желтый цвет), антофеины (темно-бурый цвет). В вакуолях семян содержатся белки-протеины. В клеточном соке растворены также многие неорганические соединения.

Вакуоли – места отложений конечных продуктов обмена веществ.

Вакуоли формируют внутреннюю водную среду клетки, с их помощью осуществляется регуляция водно-солевого обмена. Вакуоли поддерживают тургорное гидростатическое давление внутри клеток, что способствует поддержанию формы неодревесневших частей растений – листьев, цветков. Тургорное давление связано с избирательной проницаемостью тонопласта для воды и явлением осмоса – односторонней диффузией воды через полупроницаемую перегородку в сторону водного раствора солей большей концентрации. Поступающая в клеточный сок вода оказывает давление на цитоплазму, а через нее – на стенку клетки, вызывая упругое ее состояние, т.е. обеспечивая тургор. Нехватка воды в клетке ведет к плазмолизу, т.е. к сокращению объема вакуолей и отделению протопластов от оболочки. Плазмолиз может быть обратимым.

Включения – вещества, образующиеся в результате жизнедеятельности клетки либо про запас, либо как отбросы. Включения локализуются либо в гиалоплазме и органоидах, либо в вакуоле в твердом или жидком состоянии. Включения представляют собой запасные питательные вещества, например, зерна крахмала в клубнях картофеля, луковицах, корневищах и в других органах растений, откладывающиеся в особом типе лейкопластов – амилопластах.

Клеточная стенка – это твердое структурное образование, придающее каждой клетке форму и прочность. Она выполняет защитную роль, предохраняя клетку от деформации, противостоит высокому осмотическому давлению большой центральной вакуоли и препятствует разрыву клетки. Клеточная стенка - продукт жизнедеятельности протопласта. Первичная клеточная стенка образуется сразу после деления клеток и состоит в основном из пектиновых веществ и целлюлозы. Разрастаясь, она округляется, образуя межклетники, заполненные водой, воздухом или пектиновыми веществами. При отмирании протопласта мертвая клетка способна проводить воду и выполнять свою механическую роль. Клеточная стенка может разрастаться только в толщину. На внутренней поверхности первичной клеточной стенки начинает откладываться вторичная клеточная стенка. Утолщение бывает внутренним и наружным. Наружные утолщения возможны только на свободной поверхности, например, в виде шипов, бугорков и других образований (споры, пыльцевые зерна). Внутреннее утолщение представлено скульптурными утолщениями в виде колец, спиралей, сосудов и т.д. Неутолщенными остаются только поры – места во втроричной стенке клетки. Через поры по плазмодесмам – тяжам цитоплазмы – осуществляется обмен веществ между клетками, передается раздражение из одной клетки в другую и т.д. Поры бывают простые и окаймленные. Простые поры встречаются в паренхимных и прозенхимных клетках, окаймленные – сосудах и трахеидах, проводящих воду и минеральные вещества.

Вторичная клеточная стенка построена главным образом из целлюлозы, или клетчатки (С6Н10О5)n – очень стойкого вещества, нерастворимого в воде, кислотах и щелочах.

С возрастом клеточные стенки претерпевают видоизменения, пропитываются различными веществами. Типы видоизменений: опробковение, одревеснение, кутинизация, минерализация и ослизнение. Так, при опробковении клеточные стенки пропитываются особым веществом суберином, при одревеснении – лигнином, при кутинизации – жироподобным веществом кутином, при минерализации – минеральными солями, чаще всего углекислым кальцием и кремнеземом, при ослизнении клеточные стенки поглощают большое количество воды и сильно разбухают.

Ферменты, витамины, фитогормоны. Ферменты – это органические катализаторы белковой природы, присутствуют во всех органоидах и компонентах клетки.

Витамины – органические вещества разного химического состава, присутствуют в качестве компонентов в ферментах и выполняют роль катализаторов. Витамины обозначаются заглавными буквами латинского алфавита: А, В, С, D и др. Различают водорастворимые витамины (В, С, РР, Н и др.) и жирорастворимые (А, D, Е).

Водорастворимые витамины находятся в клеточном соке, а жирорастворимые – в цитоплазме. Известно более 40 витаминов.

Фитогормоны – физиологически активные вещества. Наиболее изучены гормоны роста – ауксин и гиббереллин.

Жгутики и реснички. Жгутики – двигательные приспособления у прокариот и у большинства низших растений.

Реснички имеют многие водоросли, мужские половые клетки высших растений, за исключением покрытосеменных и части голосеменных.

 

Лекция № 3

 

Растительные ткани

 

 

1. Общая характеристика и классификация тканей.

2. Образовательные ткани.

3. Покровные ткани.

4. Основные ткани.

5. Механические ткани.

6. Проводящие ткани.

7. Выделительные ткани.

 

 

Понятие о тканях как группах сходных клеток появилось уже в трудах первых ботаников-анатомов в XVII в. Мальпиги и Грю описали важнейшие ткани, в частности ввели понятия о паренхиме и прозенхиме.

Классификация тканей на основе физиологических функций была разработана в конце XIX – начале XX в. Швенденером и Габерландтом.

Ткани – это группы клеток, имеющие однородное строение, одинаковое происхождение и выполняющие одну и ту же функцию.

В зависимости от выполняемой функции различают следующие типы тканей: образовательные (меристемы), основные, проводящие, покровные, механические, выделительные. Клетки, составляющие ткань и имеющие более или менее одинаковое строение и функции, называют простыми, если клетки неодинаковые, то ткань называют сложной или комплексной.

Ткани делят на образовательные, или меристемные, и постоянные (покровные, проводящие, основные и т.д.).

Классификация тканей.

1. Образовательные ткани (меристемы): 1) верхушечные;

2) боковые: а) первичные (прокамбий, перицикл);

б) вторичные (камбий, феллоген)

3) вставочные;

4) раневые.

2. Основные: 1) ассимиляционная паренхима;

2) запасающая паренхима.

3. Проводящие: 1) ксилема (древесина);

2) флоэма (луб).

4. Покровные (пограничные): 1) наружные: а) первичные (эпидерма);

б) вторичные (перидерма);

в) третичные (корка, или ритидом)

2) наружные: а) ризодерма;

б) веламен

3) внутренние: а) эндодерма;

б) экзодерма;

в) обкладочные клетки проводящих пучков в листьях

5. Механические (опорные, скелетные) ткани: 1) колленхима;

2) склеренхима: а) волокна;

б) склереиды

6. Выделительные ткани (секреторные).

 

2. Образовательные ткани. Образовательные ткани, или меристемы, - это постоянно молодые, активно делящиеся группы клеток. Находятся они в местах роста разных органов: кончиках корней, верхушках стеблей и т.д. Благодаря меристемам происходят рост растения и образование новых постоянных тканей и органов.

В зависимости от местоположения в теле растения образовательная ткань может быть верхушечной, или апикальной, боковой, или латеральной, вставочной, или интеркалярной, и раневой. Образовательные ткани делят на первичные и вторичные. Так, верхушечные меристемы всегда первичные, они определяют рост растения в длину. У низкоорганизованных высших растений (хвощи, некоторые папоротники) верхушечные меристемы слабо выражены и представлены всего лишь одной начальной, или инициальной делящейся клеткой. У голосеменных и покрытосеменных верхушечные меристемы хорошо выражены и представлены многими инициальными клетками, образующими конусы нарастания. Латеральные меристемы, как правило, вторичны и за счет них происходит разрастание осевых органов (стеблей, корней) в толщину. К боковым меристемам относят камбий и пробковый камбий (феллоген), деятельность которого способствует образованию пробки в корнях и стеблях растения, а также особую ткань проветривания – чечевички. Боковая меристема, как и камбий, образует клетки древесины и луба. В неблагоприятные периоды жизни растения деятельность камбия замедляется или совсем прекращается. Интеркалярные, или вставочные, меристемы чаще всего первичны и сохраняются в виде отдельных участков в зонах активного роста, например у основания междоузлий и у основания черешков листьев злаков.

3. Покровные ткани. Покровные ткани защищают растение от неблагоприятных воздействий внешней среды: солнечного перегрева, излишнего испарения, резкого перепада температуры воздуха, иссушающего ветра, механического воздействия, от проникновения вовнутрь растения болезнетворных грибов и бактерий и т.д. Различают первичную и вторичную покровные ткани. К первичным покровным тканям относятся кожица, или эпидерма, и эпиблема, к вторичным – перидерма (пробка, пробковый камбий и феллодерма).

Кожица, или эпидерма, покрывает все органы однолетних растений, молодые зеленые побеги многолетних древесных растений текущего вегетационного периода, надземные травянистые части растений (листья, стебли и цветки). Эпидерма чаще всего состоит из одного слоя плотно сомкнутых клеток без межклеточного пространства. Она легко снимается и представляет собой тонкую прозрачную пленку. Эпидерма – живая ткань, состоит из постепенного слоя протопласта с лейкопластами и ядром, крупной вакуоли, занимающей почти всю клетку. Стенка клеток в основном целлюлозная. Наружная стенка эпидермальных клеток более утолщенная, боковые и внутренние – тонкие. Боковые и внутренние стенки клеток имеют поры. Основная функция эпидермы – регуляция газообмена и транспирации, осуществляемая в основном через устьица. Вода и неорганические вещества проникают через поры.








Дата добавления: 2015-08-08; просмотров: 1966;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.041 сек.