Тепловые машины
Термодинамика как наука развилась в начале XIX века из необходимости объяснить работу тепловых машин. Термодинамические расчеты необходимы при конструировании любых машин, способных производить работу. Тепловой машиной называется устройство, использующее тепловую энергию для совершения механической работы. В этом смысле и паровой двигатель, и атомный реактор эквивалентны.
Тепловая машина состоит из нагревателя, рабочего тела и охладителя рабочего тела. Охладителем, в конечном счете, служит окружающая среда. Тепловая машина работает по принципу замкнутого цикла, совершая круговой процесс. В ходе прямого цикла рабочее тело, например, пар, получив от нагревателя количество тепла Q1, расширяется от объема V1 до объема V3. Согласно первому закону термодинамики, это тепло расходуется на нагревание рабочего тела и на совершение механической работы
Q1 = E2 ‑ E1 + A13, (2.52)
где E2 ‑ E1 — изменение внутренней энергии рабочего тела при переходе из состояния 1 в состояние 3. При обратном цикле над газом производится работа: газ сжимается и передает охладителю количество тепла
‑ Q2 = E1 ‑ E2 + A31. (2.53)
Складывая оба уравнения, получим Q1 ‑ Q2 = A13 + A31 =A, где А — полная работа, совершенная машиной за один цикл.
Отношение полезной работы, совершенной машиной, к количеству полученного тепла составляет КПД тепловой машины
. (2.54)
Понятно, что КПД машины всегда меньше единицы, поскольку не все количество полученного тепла переходит в полезную работу.
В реальных тепловых машинах КПД, очевидно, еще меньше, так как часть тепла теряется безвозвратно в процессе работы машины. Для получения максимального КПД следует рассмотреть рабочий цикл, образованный обратимыми процессами. Этому требованию отвечает цикл (см. рис.), впервые рассмотренный французским ученым Карно. В качестве рабочего тела в цикле Карно рассматривается идеальный газ. Цикл Карно состоит из последовательных расширения и сжатия газа, причем каждый из процессов совершается сначала изотермически, а затем адиабатически. При прямом цикле тело по-прежнему сначала получает тепло, а затем отдает его. Достоинство цикла Карно состоит в том, что все процессы обратимы, и, следовательно, КПД такой машины будет максимальным.
Пусть газ расширяется изотермически, переходя из состояния 1 в состояние 2. При изотермическом процессе внутренняя энергия газа не изменяется, и количество полученного тепла Q1 равно работе А12. По формуле (2.38):
. (2.55)
На участке 2-3 газ расширяется адиабатически. На участке 3‑4 он сжимается опять изотермически, для чего охладителю должно быть отдано тепло Q2. Работа на участке 3‑4 равна ‑ Q2, причем
. (2.56)
Наконец, на участке 4‑1 газ адиабатически сжимается, возвращаясь к исходному состоянию. Воспользуемся уравнением адиабаты (2.42), заменив в нем, согласно уравнению состояния PV , на ν·RT. Уравнение адиабаты принимает вид:
TV γ‑1 = const. (2.57)
Для процессов 2‑3 и 4‑1 цикла Карно отсюда следует:
.
Разделив первое уравнение на второе, получим V2/V1 = V3/V4. После подстановки этого выражения в (2.56) найдем:
. (2.58)
Подставляя (2.58) в формулу (2.54), получим выражение для КПД цикла Карно:
. (2.59)
Из формулы (2.59) следует, что КПД тепловой машины определяется только разностью температур нагревателя и холодильника. КПД не зависит ни от свойств рабочего тела, используемого в машине, ни от свойств самой машины. Полученный результат показывает, что при T1 = T2 КПД машины равен нулю, т. е. машина не совершает работы. Работа максимальна (η = 1) при T2 = 0. Таким образом, машина тем выгоднее, чем ниже температура охладителя.
Дата добавления: 2015-08-08; просмотров: 748;