Тепловое излучение абсолютно черного тела

Тепловое излучение — это испускание электромагнитных волн за счет внутренней энергии излучающих тел. Количественно этот процесс характеризуется энергетической светимостью, т.е. энергией, излучаемой в единицу времени единичной поверхностью излучающего тела. Энергетическую светимость измеряют в .

. (10.1)

Тепловое излучение происходит в широком диапазоне частот электромагнитных волн.

Энергия, излучаемая в диапазоне частот от ω до (ω + dω), пропорциональна ширине диапазона dω:

.

Здесь: испускательная способность тела.

При заданной неизменной температуре Т, энергетическую светимость тела легко связать с его испускательной способностью

. (10.2)

Подобно испускательной способности, вводиться понятие поглощательная способность тела

. (10.3)

В этом определении dΦω — поток лучистой энергии, падающий на элементарную площадку dS поверхности тела (рис. 10.1). Эта энергия принесена электромагнитными волнами в диапазоне частот от ω до (ω + dω)

Часть этого потока отражается, а другая часть — поглотиться поверхностью.

Поглощательная способность a(ω,T), также как и излучательная — r(ω,T), является функцией температуры тела и частоты излучения.

Тела, поглощающие всё падающее на них излучение, называются абсолютно черными. Поглощательная способность таких тел равна, конечно, единице aч.т. = 1.

Рис. 10.1

Термин «абсолютно черное тело» ввел в 1860 году немецкий физик Кирхгоф. Он же установил, что в условиях термодинамического равновесия такое тело излучает столько же энергии, сколько и поглощает.

При этом отношение испускательной и поглощательной способностей тела не зависит от его природы и является для всех тел одной и той же функцией частоты и температуры (закон Кирхгофа).

(10.4)

Поскольку поглощательная способность абсолютно черного тела равна единице (aч.т. = 1), универсальная функция Кирхгофа совпадает с излучательной способностью такого тела.

Однако в природе не встречаются абсолютно черные тела. Даже сажа отражает некоторую часть падающего на неё излучения.

Удовлетворительной моделью абсолютно черного тела считается небольшое отверстие в полом предмете (рис. 10.2). Внутреннюю поверхность такого предмета нужно выкрасить в черный цвет. Излучение, падающее на поверхность отверстия, проникает в полость и в результате многократных отражений фактически нацело поглощается.

Рис. 10.2

Многие ученые в начале прошлого века экспериментально исследовали тепловое излучение абсолютно черных тел.

Опыты Люммера в видимой части излучения, исследования Бекмана и Пашена — в инфракрасной а Байша — в ультрафиолетовой области позволили установить универсальную функцию Кирхгофа при разных температурах и в разных областях излучаемого спектра.

Экспериментальные кривые излучения абсолютно черного тела при различных температурах приведены на рис. 10.3.

Рис.10.3

Обрабатывая эти экспериментальные результаты, профессор Венского университета Иозеф Стефан в 1883 году установил, что интегральная светимость абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры.

Годом позже другой венский физик – Людвиг Больцман – доказал, что закон Стефана есть прямое следствие законов в классической термодинамики.

Закон Стефана-Больцмана:

. (10.5)

Как следует из графиков рис 10.3, с повышением температуры абсолютно черного тела, максимум его излучательной способности смещается в область более коротких волн (высоких частот).

Эту закономерность излучения черного тела Вильгельм Вин сформулировал в виде следующего закона:

Произведение абсолютной температуры черного тела на длину волны, соответствующую максимуму излучения, постоянно (Закон смещения Вина)

(10.6)

Таковы основные закономерности излучения абсолютно черного тела, экспериментально установленные в начале прошлого века.

3.2 Классические теории Вина и Рэлея-Джинса.
«Ультрафиолетовая катастрофа».

Многие ученые пытались объяснить особенности излучения черного тела с позиций классической термодинамики. Опираясь на законы термодинамики, принцип равного распределения энергии по степеням свободы, применяя методы классической статической механики для стационарных волн, которые могли бы существовать в полости, Вин, Рэлей, Джинс и многие другие ученые пытались получить теоретическую формулу, описывающую известную экспериментальную функцию

Однако формула, например, полученная Вином, неплохо совпадающая с экспериментальными данными в высокочастотной области излучения, расходилась с экспериментом в низкочастотной части спектра.

Формула Рэлея-Джинса, напротив, подтверждалась в низкочастотной части спектра и уводила в бесконечность в высокочастотной области (рис. 10.4)

Рис. 10.4

Энергетическая светимость тела, вычисленная с использованием теоретической формулы Рэлея-Джинса, оказывается бесконечной.

Отсюда следует абсурдный вывод: плотность энергии в равновесной системе бесконечна!

Этот результат, получивший название ультрафиолетовой катастрофы, на самом деле означал катастрофу классической физики.

Гипотеза Планка

В 1889 году к теоретическому изучению излучения черного тела приступил Макс Планк. Ему удалось подобрать такую эмпирическую формулу, которая приводила к формуле Вина в области коротких волн и совпадала с законом Рэлея-Джинса в длинноволновой области.

. (10.7)

Формула Планка позволяет вычислить интегральную светимость абсолютно черного тела. Это вычисление приводит к закону Стефана-Больцмана.

При этом постоянная Больцмана — σ, рассчитанная по формуле Планка, в точности совпадает с тем значением, которое дает эксперимент.

Формула Планка подтверждает и закон смещения Вина

И здесь постоянная «b» подтверждается экспериментом.

Найдя столь удачную формулу(10.7), Планк попытался объяснить физический смысл новой константы ħ, которую ему пришлось ввести в это математическое выражение.

Оказалось, что формула безукоризненно описывает излучение черного тела только в предположении, что каждый колеблющийся осциллятор, окруженный абсолютно поглощающей оболочкой, излучает энергию дискретно, то есть порциями – квантами.

Энергия такого кванта по Планку пропорциональна частоте:

 

. (10.8)

Если согласиться с этой неслыханной гипотезой о порциальном излучении энергии, возникает новый вопрос: каков механизм распространения этих «порций энергии»?

Сохраняют ли кванты свою индивидуальность или каждый элемент рассеивается в пространстве, превращаясь в электромагнитную волну?

Первое предположение — об индивидуальности квантов — несовместимо с классической волновой теорией оптики и теплового излучения.

Опасаясь отбрасывать волновую теорию, которая на протяжении целого века ни у кого не вызывала никаких сомнений, Планк избрал второе из двух объяснений. В первоначальной форме его теория предполагала испускание излучения дискретным, в виде квантов, а само излучение – непрерывным.

«Когда думаешь о полном опытном подтверждении, которое получила электродинамика Максвелла, - писал Планк в 1911 году, - о необычайных трудностях, с которыми придется столкнуться всем теориям при объяснении электрических и магнитных явлений, если они откажутся от этой электродинамики, инстинктивно испытываешь неприязнь ко всякой попытке поколебать её фундамент».








Дата добавления: 2015-08-04; просмотров: 967;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.012 сек.