Потребление воды на ТЭС. Источники и системы водоснабжения

Тепловые и атомные электростанции по­требляют значительное количество воды для конденсации пара в конденсаторах паровых турбин, обеспечиваемое техническим водо­снабжением электростанции. Потребителями технической воды являются также маслоох­ладители главных турбин и вспомогательного оборудования, охладители водорода и конден­сата статоров электрогенераторов, охладите­ли воздуха возбудителей, система охлажде­ния подшипников механизмов и т. п. На ТЭС, сжигающих твердое топливо, техническая во­да используется в системе гидротранспорта золы и шлака, для гидроуборки в тракте топливоподачи. На АЭС потребителями воды технического водоснабжения являются, кроме того, различные элементы реакторной уста­новки, теплообменники системы расхолажи­вания и др. Сырая вода для химической во­доочистки электростанции обычно поступает из системы технического водоснабжения. Ни­же показано соотношение между потребите­лями технической воды:

Расход

Потребители технической воды электростанции воды, %

Конденсация пара в конденсаторах турбин..............................................................................................100

Охлаждение водорода, воздуха, конденсата
статора электрогенераторов и крупных электро-­
двигателей ........................................ ……………………………………………………………. 2,5—4

Охлаждение подшипников вспомогательных
механизмов ……………………………………………………………………………………...............0,3—0,8

Гидротранспорт золы и шлака при оборот­
ной схеме водоснабжения системы гидрозоло-­
удаления (в зависимости от расхода топлива,
его зольности, способа золошлакоудаления и
типа золоуловителей)........................... …………………………………………………………….0,1—0,4

Восполнение потерь и утечек пароводяного

тракта электростанции и тепловых сетей . …………………………………………………….... 0,04—0,1

Потребление воды бассейнами выдержки и

перегрузки топлива, спринклерными устройствами

реакторной установки АЭС …………………………..............................................................................0,8—1

Потребление воды теплообменниками конту-­
ра расхолаживания, охлаждение продувки па-­
рогенераторов АЭС............................. …………………………………………………………....0,3—0,4

Основные потребители технической воды — конденсаторы паровых турбин — являются ча­стью низкопотенциального комплекса электро­станции, включающего также ЦНД турбин, систему технического водоснабжения с водо-охладителем, где осуществляется передача теплоты конденсации пара окружающей сре­де (рис. 6.1).

Применяемые на ТЭС и АЭС конденсато­ры — одноходовые либо многоходовые. Число ходов воды по отдельным группам поверхно­стей нагрева доходит до четырех. Независимо от числа ходов используют двухпоточную схему движения воды от входной до выход­ной камер конденсатора, что позволяет от­ключить и осмотреть любой из двух потоков без останова турбины (на пониженной на­грузке). Современные конденсаторы выполня­ют регенеративного типа с нагревом переох­лажденного конденсата до температуры на­сыщения отработавшего пара; их поверхность нагрева выполнена обычно из латунных пря­мых трубок диаметром 24—28 мм. Техниче­ская вода из водоохладителя при помощи циркуляционных насосов поступает по подво­дящим каналам (водоводам) в водяные ка­меры конденсаторов, проходит по их трубной системе и затем сбрасывается по отводящим каналам снова в охладитель.

 

 

Рис. 6.1. Расчетная схема низкопотенциального ком­плекса электростанции:

ЦВД — цилиндр высокого давления; ЦСД — цилиндр средне­го давления; ЦНД — цилиндр низкого давления; ЦН — цирку­ляционные насосы; КН — конденсатные насосы


Наиболее распространенный источник тех­нической воды для электростанций — реки. Расход воды в реке (дебит реки) и ее тем­пература изменяются в течение года. Для большей части рек на территории СССР, про­текающих по равнинам, характерен макси­мальный расход воды в их половодье (март, апрель), а также в период обильных дож­дей. Зимой и летом расход воды минимален. Для рек горных районов характерен пик в расходе воды, связанный с таянием ледников в летнее время (рис. 6.2). Источником водо­снабжения может быть достаточных разме­ров озеро или море, если электростанция со­оружена на его берегу. В тех случаях, когда дебит реки значительно превышает потребле­ние технической воды электростанцией (в 3— 4 раза и более), применяют прямоточную си­стему водоснабжения. Вода, взятая из реки, проходит через конденсаторы турбин и затем сливается ниже по течению реки таким об­разом, чтобы смешение свежей и нагретой воды не вызывало нарушения экологической обстановки. Прямоточную систему можно осуществить на берегу моря или достаточно большого озера с проточной водой.

Использование соленой морской воды тре­бует применения особых мер защиты обору­дования и трубопроводов от коррозии. В ос­новном это относится к конденсатору турби­ны, трубки которого, водяные камеры, труб­ные решетки должны быть выполнены из коррозионно-стойких материалов (специаль­ных сплавов); применяют также специальную электрохимическую защиту конденсаторов и труб против коррозии. Крепление трубок в трубных решетках должно быть герметичным во избежание попадания морской воды в кон­денсат турбины. Содержание песка в пода­ваемой воде должно быть не более 20— 50 мг/кг.

 

 

Рис.6.2. Изменение расхода воды в реке в течение года:

а — равнинные реки; б — горные реки

Оборотная система водоснабжения харак­теризуется многократным использованием технической воды. Ее применяют в тех слу­чаях, когда в районе сооружения электро­станции нет источника с достаточным расхо­дом воды или ее ресурсы исчерпаны другими потребителями. В качестве водоохладителя в оборотной системе водоснабжения используют водоем-охладитель либо градирни. Водоем-охладитель создается на базе небольшой реки с переменным расходом воды, колеблющимся от максимального во время паводка до ми­нимального, почти нулевого при пересыхании русла в летнее время и промерзании реки зимой. Вблизи электростанции устанавливают плотину, задерживающую сток реки для за­полнения водоема-охладителя водой в пери­од, предшествующий пуску ТЭС или АЭС.

Водоем-охладитель можно соорудить вне русла реки и заполнять его перекачиванием воды из источника водоснабжения, находя­щегося в нескольких десятках километров от электростанции. Этот же источник обеспечи­вает возмещение всех потерь воды электро­станции и водоема-охладителя.

Градирни являются типовыми водоохлади-телями, сооружаемыми на территории элек­тростанции. Они состоят из оросительных устройств, вытяжных башен и приемного бас­сейна и обеспечивают тепло - и массообмен подогретой воды с окружающим воздухом.

Применение градирен в качестве водоох­ладителя характерно для теплоэлектроцен­тралей, которые располагаются рядом с круп­ными населенными пунктами и промышлен­ными объектами в достаточной близости к потребителям теплоты. В этих случаях ис­пользование реки с большим дебитом и пря­моточного водоснабжения, а также водоема-охладителя с оборотным водоснабжением ограниченно.

Сооружение водоемов-охладителей для крупных электростанций требует затопления значительной территории: около 6 км2 на 1000 МВт для КЭС и примерно 10 км2 на 1000 МВт для АЭС. Их строительство слож­нее, чем установка градирен, но требует мень­ше капиталовложений; кроме того, водоемы-охладители проще в эксплуатации. Тенден­ция удорожания земли привела в развитых капиталистических странах и в ряде социа­листических стран к ограниченному примене­нию водоемов-охладителей и к широкому ис­пользованию градирен на КЭС и АЭС.

Смешанная прямоточно-оборотная система водоснабжения сочетает в себе элементы двух предыдущих систем и может использоваться на электростанциях при увеличении потреб­ления технической воды из-за установки но­вых мощностей либо при значительном ко­лебании расхода воды в источнике прямо­точной системы.

Проектированию систем водоснабжения электростанций предшествуют климатические, топографические, гидрологические, геологиче­ские и другие изыскания. При проектирова­нии используются данные соответствующих многолетних наблюдений по годичному из­менению температуры воды в источнике во­доснабжения,

В конденсатор турбины (см. рис. 6.1) поступает отработавший пар в количестве Dкп, кг/ч, с энтальпией hк, кДж/кг, и влажностью yк=8-12%. В результате теплообмена че­рез поверхность трубной системы конденса­тора отработавший пар конденсируется при давлении рк, кПа, практически сохранив свою температуру tк, °С. В конденсатор поступают также конденсат пара турбоприводов пита­тельных насосов, добавочная вода для вос­полнения потерь пара и конденсата, дренажи охладителей уплотнений и эжекторов и т. п. Конденсат Dк, кг/ч, с энтальпией h'к, кДж/кг, забирается конденсатными насосами турбо-установки и подается в систему регенератив­ного подогрева воды.

Через трубную систему конденсатора про­ходит необходимое количество охлаждающей воды Gв, кг/ч, при температуре на входе tв1и на выходе tв2, оС.

Теплота конденсации пара Qк (количество теплоты, отдаваемое холодному источнику, кДж/ч) определяется из уравнения теплового баланса конденсатора:

где Dдрi, — количество дополнительных пото­ков конденсата, добавочной воды, дренажей в конденсатор, кг/ч; hдрi,- — энтальпия этих потоков, кДж/кг.

Если принять Dкп=Dк, (теп­лота конденсации 1 кг отработавшего пара), то получим

где св = 4,19 кДж/(кг*К)—удельная тепло­емкость воды; в — нагрев воды в конденса­торе, оС.

Важной характеристикой конденсатора яв­ляется кратность охлаждения, т. е. соотноше­ние расходов охлаждающей воды и конден­сируемого пара, определяемая из предыдущей формулы, кг/кг:

По условиям теплообмена в конденсаторе температуры охлаждающей воды tв1 и tв2 и конденсируемого пара tк связаны соотноше­нием

.

Конечный температурный напор (недогрев воды до температуры конденсации пара) К зависит от характеристик конденсатора, °С:

где k — средний коэффициент теплопередачи, Вт/(м2*К); FК— площадь поверхности охлаж­дения конденсатора, м2. При номинальном пропуске пара в конденсатор, расчетном рас­ходе охлаждающей воды, незагрязненной трубной системе К зависит от температуры охлаждающей воды tв1 и колеблется в пре­делах от 4 до 10 °С. Плохое качество этой воды приводит к отложениям в трубной си­стеме в основном солей кальция и к повыше­нию значения к.

Чистота внутренней поверхности трубок конденсаторов существенно влияет на вакуум. Для борьбы с отложениями солей использу­ют метод периодической механической очист­ки, а также способ очистки трубок «на ходу». В поток циркуляционной воды перед конден­сатором вводятся твердые резиновые шарики диаметром, несколько меньшим внутреннего диаметра трубок. Они проходят через труб­ную систему и очищают ее. После конденса­торов шарики удаляются из потока воды. Представляет интерес применение мягких по­ристых шариков большего диаметра, чем внутренний диаметр трубок. Проходя через них, шарики сжимаются и вытягиваются в форме цилиндриков, постоянно стирая на трубках все отложения.

Из предыдущих выражений получим, °С,

,

что указывает на наибольшую зависимость конечных параметров пара tК и рк от темпе­ратуры охлаждающей воды tв1 и кратности охлаждения т; qк = 2200-2300 кДж/кг.

Оптимизация параметров низкопотенци­ального комплекса (НПК) электростанции сводится к определению экономически наивы­годнейших значений следующих его харак­теристик: расхода охлаждающей воды Gв, расчетных значений давления в конденсаторе рк (вакуума V) и температуры охлаждающей воды tВ1, площади поверхности охлаждения (теплообмена) конденсатора Fк, числа вы­хлопов турбины г или удельной нагрузки вы­хлопа gF, кг/(м2-ч), скорости охлаждаю­щей воды wв, м/с, в трубной системе конден­сатора, параметров водоохладителя (для обо­ротных систем водоснабжения). Эту ком­плексную задачу обычно решают при усло­вии постоянной тепловой нагрузки парового котла или реакторной установки, т. е. при изменяющейся электрической мощности тур­богенератора (Nэ=vаг) с учетом замещаю­щей мощности в энергосистеме.

С понижением давления отработавшего пара рк увеличивается его теплоперепад в турбине и электрическая мощность Nэ, возрастает экономичность турбоустановки и сни­жается удельный расход топлива на выработ­ку электроэнергии. Одновременно с этим удорожается часть низкого давления турбин, увеличивается число выхлопов пара. Пони­жение конечного давления возможно до тех­нически предельного вакуума, связанного с увеличением выходных потерь турбины и за­медлением прироста мощности и КПД (рис. 6.3).

Расчетная температура охлаждающей во­ды tв1р, оказывает значительное влияние на давление пара в конденсаторах турбин. Она зависит от метеорологических факторов в районе расположения электростанции, а так­же от системы водоснабжения и типа водоохладителя. Для заданного района эксплуа­тации ТЭС и АЭС применение оборотной си­стемы технического водоснабжения приводит к повышению среднегодовой температуры тех­нической воды. По сравнению с прямоточной системой повышение среднегодовой темпера­туры tв1, составляет при использовании во­доемов-охладителей 2—4 °С, а при установке градирен—10—12°С (табл. 6.1).

С увеличением температуры воды tв1, для получения нужного конечного давления в кон­денсаторе при заданной паровой нагрузке турбины требуется повышение кратности ох­лаждения т, т. е. подаваемого в конденсатор расхода охлаждающей воды. Ввиду сезонно­го изменения температуры воды tв1, кратность охлаждения т летом должна быть значитель­но выше, чем зимой. Поэтому расчетный расход воды Gв принимают по летнему режи­му работы турбоустановок с учетом типа водоохладителя.

Таблица 6.1

 

  Среднегодовая температура воды. "С, в районах
Система водоснабжения Урала и Си­бири средней поло­сы европей­ской части СССР юга европей­ской части СССР Средней Азии
Прямоточная Оборотная с водоемом-ох­ладителем Оборотная с градирнями 6—10 8—12 18—22 8—12 10—14 18—22 10—14 13—18 20—24 8—15 13—18 20—26

 

Оптимальный вакуум и экономическая кратность охлаждения соответствуют такому режиму работы, при котором разность между приростом мощности турбины (вследствие снижения конечного давления) и увеличением затраты мощности на привод циркуляци­онных насосов будет максимальной, соответ­ствующей наибольшему отпуску электроэнергии в энергосистему. Экономическая крат­ность охлаждения составляет для многоходо­вых конденсаторов 35—60, для одноходовых конденсаторов 90—110 кг/кг.

 

Рис. 6.3. Относительная поправка к электрической мощности при изменении конечного давления

 

Изменение скорости охлаждающей воды в трубной системе конденсаторов ограничи­вается качеством воды и применяемым ма­териалом трубок. Увеличение скорости при­водит к повышению затрат электроэнергии на циркуляционные насосы, поэтому экономиче­ски обоснованное значение этой скорости на­ходится обычно в пределах wв=1,8-2,0 м/с.

На турбоагрегатах мощностью до 300 МВт включительно применяют подвально-попереч-ное расположение конденсаторов. Переход к турбинам большей мощности с несколькими ЦНД позволяет использовать подвально-ак-сиальные конденсаторы, упрощающие как схему, так и компоновку циркуляционных во­доводов. В этих конденсаторах реализована схема ступенчатой конденсации пара за счет установки перегородки по пару и последова­тельного включения отдельных корпусов по охлаждающей воде. Это практически без до­полнительных капиталовложений повышает экономичность турбоустановки (рис. 15.4). Выигрыш в располагаемой мощности турбин составляет 0,10—0,15% на КЭС и 0,15— 0,25 % на АЭС.

 

 

Рис. 6.4. Схема двухступенчатой конденсации пара (а) и повышение КПД турбоустановки при ступенчатой конденсации (по ВТИ) (б):

i—число ступеней конденсации; т0— средняя кратность охлаждения; — относительное приращение КПД турбоагрегата

 

Удельный расход пара современных тур­бин составляет dо=3,1 кг/(кВт*ч) для ТЭС и d0=6,1 кг/(кВт*ч) для АЭС. Удельный пропуск пара в конденсаторы паровых тур-

бин с учетом пароотборов на регенеративный

подогрев воды составит dк = 2,0 кг/(кВт*ч) на ТЭС и =3,5 кг/(кВт*ч) на АЭС. При мощности электростанции Nэ.с=2000 МВт и m= 90 расход охлаждающей воды составит: на ТЭС 360*106 кг/ч=100м3/с; на АЭС Gв = =90*3,5*2000*103=630*106 кг/ч=175 м3/с.

Для пропуска такого количества воды со скоростью, например, 2,5 м/с требуются цир-ляционные водоводы с общим поперечным сечением на ТЭС 40 м2, на АЭС 70 м2

 








Дата добавления: 2015-08-01; просмотров: 4306;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.019 сек.