Полосы равного наклона

Из формулы (10) следует, что оптическая разность хода D лучей, а, следовательно, и результат интерференции в тонких пленках, определяются четырьмя величинами – l, d, п и i. В зависимости от того, какая из величин – i или d – является переменной, различают полосы равного наклона и равной толщины.

Пусть плоскопараллельная пластина толщиной d освещается рассеянным монохроматическим светом от точечного источника S (рис. 4).

 

Рассмотрим три луча 1, 2 и 3, плоскость падения которых совпадает с плоскостью рисунка, а углы падения равны соответственно i1, i2 и i3 При отражении от верхней и нижней поверхности пластины лучи интерферируют в точках Р1, Р2 и Р3, усиливая или ослабляя друг друга в зависимости от угла падения. Такие же точки образуют лучи, лежащие в других плоскостях падения. Совокупность точек с одинаковой освещенностью дают на экране интерференционные полосы в виде концентрических эллипсов. Поскольку каждая из таких полос образована лучами, падающими на пластину под одним и тем же углом (под одинаковым наклоном), то они называются полосами равного наклона. При освещении пластины белым светом полосы имеют радужную окраску.

Лучи, отразившиеся от верхней и нижней граней плоскопараллельной пластины, параллельны друг другу и «пересекаются» в бесконечности. Поэтому го­ворят, что полосы равного наклона локализованы в бесконечности. Их можно наблюдать невооруженным глазом, если аккомодировать его на бесконечность.

 








Дата добавления: 2015-08-01; просмотров: 1963;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.