ВВЕДЕНИЕ. Настоящая глава посвящена той из компьютерных технологий обработки информации, ради которой когда-то создали первую ЭВМ и ради которой сегодня в значительной

 

Настоящая глава посвящена той из компьютерных технологий обработки информации, ради которой когда-то создали первую ЭВМ и ради которой сегодня в значительной мере создают супер-ЭВМ - решению прикладных научно-технических задач, среди которых задачи математического моделирования составляют видную долю.

Абстрактное моделирование с помощью компьютеров - вербальное, информационное, математическое - в наши дни стало одной из информационных технологий, в познавательном плане исключительно мощной. Изучение компьютерного математического моделирования открывает широкие возможности для осознания связи информатики с математикой и другими науками - естественными и социальными.

В данной главе, в значительной степени на примерах моделей из разных областей знания, показаны некоторые типичные задачи компьютерного математического моделирования. Их решение способствует выработке тех навыков, которые необходимы специалисту в области информатики.

Отметим, что, говоря о математических моделях, мы имеем в виду сугубо прикладной аспект. В современной математике есть достаточно формализованный подход к понятию «математическая модель». Внутри него вполне допустимо игнорировать вопрос о связи математики с реалиями физического мира. В этом подходе моделями являются, например, система целых чисел, система действительных чисел, евклидова геометрия, алгебраическая группа, топологическое пространство и т.д. К исследованию таких формальных моделей вполне можно подключить компьютеры, но все равно это останется «чистой» математикой. В данной главе термин «математическая модель» увязывается с некоторой предметной областью, сущностью окружающего мира.

Компьютерное математическое моделирование в разных своих проявлениях использует практически весь аппарат современной математики.

В данной главе предполагается знание основ математики:

• теории дифференциальных уравнений;

• аппроксимации функций (включая интерполяцию и среднеквадратичные приближения);

• аналитической геометрии на плоскости и в пространстве;

• математической статистики;

• численных методов:

а) решения алгебраических и трансцендентных уравнений;

б) решения систем линейных алгебраических уравнений;

в) интегрирования обыкновенных дифференциальных уравнений и их систем (задача Коши).

В тех немногих случаях, когда используемый математический аппарат выходит за пределы объема, традиционно считающегося достаточным для подготовки специалиста по информатике, минимально необходимые сведения приводятся в тексте.

 








Дата добавления: 2015-07-30; просмотров: 536;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.