Стабилитрон и его применение
Стабилитрон это тоже диод, но предназначен он не для выпрямления переменного тока, хотя и может выполнять такую функцию, а для стабилизации, т.е. поддержания постоянства напряжения в цепях питания радиоэлектронной аппаратуры. Внешний вид одной из конструкций наиболее распространенных среди радиолюбителей стабилитронов и его графическое обозначение показаны на (рис. 8). По устройству и принципу работы кремниевые стабилитроны широкого применения аналогичны плоскостным выпрямительным диодам. Но работает стабилитрон не на прямом участке вольт - амперной характеристики, как выпрямительные или высокочастотные диоды, а на обратной ветви вольт - амперной характеристики, где незначительное обратное напряжение вызывает значительное увеличение обратного тока через прибор. Разобраться в сущности действия стабилитрона вам поможет его вольт - амперная характеристика, показанная на (рис. 8, а). Здесь (как и на рис. 2) по горизонтальной оси отложены в некотором масштабе обратное напряжение Uобр., а по вертикальной оси вниз - обратный ток Iобр. Напряжение на стабилитрон подают в обратной полярности, т. е. включают так, чтобы его анод был соединен с отрицательным полюсом источника питания. При таком включении через стабилитрон течет обратный ток Iобр. По мере увеличения обратного напряжения обратный ток растет очень медленно - характеристика идет почти параллельно оси Uобр. Но при некотором напряжении Uобр. (на рис. 8, а - около 8 В) р - n переход стабилитрона пробивается и через него начинает течь значительный обратный ток. Теперь вольт - амперная характеристика резко поворачивает и идет вниз почти параллельно оси Iобр. Этот участок и является для стабилитрона рабочим. Пробой же р - n перехода не ведет к порче прибора, если ток через него не превышает некоторого допустимого значения.
Рис. 8 Стабилитрон и его графическое обозначение на схемах. |
Рис. 9 Вольт - амперная характеристика стабилитрона (а) и схема параметрического стабилизатора напряжения (б). |
На (рис. 8 ,б) приведена схема возможного практического применения стабилитрона. Это так называемый параметрический стабилизатор напряжения. При таком включении через стабилизатор V течет обратный ток Iобр., создающийся источником питания, напряжение которого может изменяться в значительных пределах. Под действием этого напряжения ток Iобр., текущий через стабилитрон, тоже изменяется, а напряжение на нем, а значит, и на подключенной к нему нагрузке Rн остается практически неизменным - стабильным. Резистор R ограничивает максимально допустимый ток, текущий через стабилитрон. Со стабилизаторами напряжения вам неоднократно придется иметь дело на практике. Вот наиболее важные параметры стабилитрона: напряжение стабилизации Uст., ток стабилизации Iст., минимальный ток стабилизации Icт.min и максимальный ток стабилизации Icт.max. Параметр Uст. - это то напряжение, которое создается между выводами стабилизатора в рабочем режиме. Наша промышленность выпускает кремниевые стабилитроны на напряжение стабилизации от нескольких вольт до 180 В. Минимальный ток стабилизации Iст. min - это наименьший ток через прибор, при котором начинается устойчивая работа в режиме пробоя (на рис. 8, а - штриховая линия Iст.min), с уменьшением этого тока прибор перестает стабилизировать напряжение. Максимально допустимый ток стабилизации Iст.max - это наибольший ток через прибор (не путайте с током, текущим в цепи, питающейся от стабилизатора напряжения), при котором температура его р - n перехода не превышает допустимой (на рис. 8, а - штриховая линия Icт.max) - Превышение тока Iст.max ведёт к тепловому пробою р - n перехода и, естественно, к выходу прибора из строя. Основные параметры некоторых стабилитронов, наиболее часто используемых в радиолюбительских конструкциях, приведены здесь. В сетевом блоке питания, например, который предлагается в самом низу страницы, будет использован стабилитрон Д814. Напряжение его стабилизации (при Iст.max 5 мА) может быть от 11,5 до 14 В, Iст.min ЗмА, Iст.max=20мА, максимальная рассеиваемая мощность, к примеру будет составлять Pmax = 11,5B * 20mA = 230мВт.
Для лучшего понимания материала данного урока и чтобы лучше закрепить в памяти ваше представление о свойствах диодов, предлагаю провести такой опыт. В электрическую цепь, составленную из батареи 3336Л (в народе называю квадратной батареей) или кроны, лампочки накаливания, рассчитанной на напряжение 3,5 В или 6.3 В если это крона и ток накала 0,28 А, включите любой Диод из серии Д7, Д226, КД226, КД220, и др. так, чтобы анод диода был соединен непосредственно или через лампочку с положительным выводом батареи, а катод - с отрицательным выводом (рис. а). Лампочка должна гореть почти так же, как если бы диода небыло в цепи. Измените порядок включения электродов диода в цепь на обратный (рис. б). Теперь лампочка гореть не должна. А если горит, значит, диод оказался с пробитым р - n переходом. Такой диод можно разломать, чтобы посмотреть, как он устроен, - для работы как выпрямитель он все равно непригоден. Но, надеюсь, диод был хорошим и опыт удался. Почему при первом включении диода в цепь лампочка горела, а при втором не горела? В первом случае диод был открыт, так как на него подавалось прямое напряжение Uпp., сопротивление диода было мало и через него протекал прямой ток Iпр., значение которого определялось нагрузкой цепи - лампочкой. Во втором случае диод был закрыт, так как к нему прикладывалось обратное напряжение Uобр., равное напряжению батареи. Сопротивление диода было очень большое, и в цепи тек лишь незначительный обратный ток Iобр., который не мог накалить нить лампочки. В этом опыте лампочка выполняла двоякую функцию. Она, во - первых, была индикатором наличия тока в цепи, а во - вторых, ограничивала ток в цепи до 0,28 А и таким образом защищала диод от перегрузки.
Опыт с диодом. |
Дата добавления: 2015-07-06; просмотров: 3686;