Особенности обмена тирозина в разных тканях. 4 страница
Регуляция синтеза гема
1. Скорость синтеза глобиновых цепей зависит от наличия гема, он ускоряет биосинтез "своих" белков.
2. Основным регуляторным ферментом синтеза гема является аминолевулинатсинтаза.
гем после взаимодействия с молекулой белка-репрессора формирует активный репрессорный комплекс, связывается с ДНК и подавляет транскрипцию, мРНК для фермента не образуется и синтез фермента прекращается. Также имеется отрицательный аллостерический эффект гема на фермент.
с другой стороны, достаточное количество ионов железа оказывает положительный эффект при синтезе молекулы аминолевулинатсинтазы. В клетке имеется особый железосвязывающий белок, который в отсутствии ионов железа обладает сродством к мРНК фермента и блокирует ее трансляцию в рибосоме, т.е. синтез белковой цепи. Ионы железа связываются с этим железосвязывающим белком, образуя с ним неактивный комплекс, что инициирует синтез фермента.
3. Положительным модулятором аминолевулинатсинтазы служит гипоксия тканей, которая в эритропоэтических тканях индуцирует синтез фермента.
4. В печени повышение активности аминолевулинатсинтазы вызывают соединения, усиливающие работу микросомальной системы окисления (жирорастворимые токсины, стероиды) – при этом возрастает потребление гема для образования цитохрома Р450, что снижает внутриклеточную концентрацию свободного гема. В результате происходит дерепрессия синтеза фермента.
Распад. За сутки у человека распадается около 9 г гемопротеинов, в основном это гемоглобин эритроцитов. Эритроциты живут 90-120 дней, после чего лизируются в кровеносном русле или в селезенке. При разрушении эритроцитов в кровяном русле высвобождаемый гемоглобин образует комплекс с белком-переносчиком гаптоглобином (фракция α2-глобулинов крови) и переносится в клетки ретикуло-эндотелиальной системы (РЭС) селезенки (гл образом), печени и костного мозга.
Первая реакция катаболизма гема происходит при участии NADPH-зависимого ферментативного комплекса гемоксигеназы. Ферментная сисгема локализована в мембране ЭР, в области электронтранспортных цепей микросомального окисления. Фермент катализирует расщепление связи между двумя пиррольными кольцами, содержащих винильные остатки, - таким образом, раскрывается структура кольца. В ходе реакции образуются линейный тетрапир-рол - биливердин (пигмент жёлтого цвета) и монооксид углерода (СО), который получается из углерода метениловой группы. Гем индуцирует транскрипцию гена гемоксигеназы, абсолютно специфичной по отношению к тему.
Ионы железа, освободившиеся при распаде гема, могут быть использованы для синтеза новых молекул гемоглобина или для синтеза других железосодержащих белков. Биливердин восстанавливается до билирубина NADPH-зависимым ферментом биливердинредуктазой. Билирубин образуется не только при распаде гемоглобина, не также при катаболизме других гемсодержащю белков, таких как цитохромы и миоглобин. При распаде 1 г гемоглобина образуется 35 мг билирубина, а в сутки у взрослого человека - примерно 250-350 мг билирубина. Дальнейший метаболизм билирубина происходит в печени.
В клетках РЭС гем в составе гемоглобина окисляется молекулярным кислородом. В реакциях последовательно происходит разрыв метинового мостика между 1-м и 2-м пиррольными кольцами гема с их восстановлением, отщеплением железа и белковой части и образованием оранжевого пигмента билирубина. Билирубин – токсичное, жирорастворимое вещество, способное нарушать окислительное фосфорилирование в клетках. Особенно чувствительны к нему клетки нервной ткани. Из клеток ретикуло-эндотелиальной системы билирубин попадает в кровь. Здесь он находится в комплексе с альбумином плазмы, в гораздо меньшем количестве – в комплексах с металлами, аминокислотами, пептидами и другими малыми молекулами. Образование таких комплексов не позволяет выделяться билирубину с мочой. Билирубин в комплексе с альбумином называется свободный (неконъюгированный) или непрямой билирубин. Из сосудистого русла в гепатоциты билирубин попадает с помощью белка-переносчика (лигандина). В клетке протекает реакция связывания билирубина с УДФ-глюкуроновой кислотой, при этом образуются моно- и диглюкурониды. Кроме глюкуроновой кислоты, в реакцию могут вступать сульфаты, фосфаты, глюкозиды. Билирубин-глюкуронид получил название связанный (конъюгированный) или прямой билирубин. После образования билирубин-глюкурониды АТФ-зависимым переносчиком секретируются в желчные протоки и далее в кишечник, где при участии бактериальной β-глюкуронидазы превращаются в свободный билирубин. Одновременно некоторое количество билирубин-глюкуронидов может попадать (особенно у взрослых) из желчи в кровь по межклеточным щелям. Таким образом, в крови в норме одновременно существуют две формы билирубина: свободный, попадающий сюда из клеток РЭС (около 80% всего количества), и связанный, попадающий из желчных протоков (до 20%). Превращение в кишечнике. В кишечнике билирубин подвергается восстановлению под действием микрофлоры до мезобилирубина и мезобилиногена (уробилиногена). Часть последних всасывается и с током крови вновь попадает в печень, где окисляется до ди- и трипирролов. При этом в здоровом организме в общий круг кровообращения и в мочу мезобилирубин и уробилиноген не попадают, а полностью задерживаются гепатоцитами. Оставшаяся в кишечнике часть пигментов ферментами бактериальной флоры толстого кишечника восстанавливается до стеркобилиногена и выделяется из организма, окрашивая кал. Незначительное количество стеркобилиногена через геморроидальные вены попадает в большой круг кровообращения, отсюда в почки и выделяется с мочой. На воздухе стеркобилиноген и уробилиноген превращаются, соответственно, в стеркобилин и уробилин. Ситуации, при которых в крови накапливается билирубин, в зависимости от причины делятся на три вида:
1.Гемолитические – в результате гемолиза при избыточном превращении гемоглобина в билирубин,
2.Печеночно-клеточные – когда печень не в состоянии обезвредить билирубин,
3.Механические – если билирубин не может попасть из печени в кишечник из-за механического перекрытия желчевыводящих путей.
Накопление билирубина в крови свыше 43 мкмоль/л ведет к связыванию его эластическими волокнами кожи и конъюнктивы, что проявляется в виде желтухи. Так как свободный билирубин липофилен, то он легко накапливается в подкожном жире и нервной ткани. Последнее особенно опасно для детей, особенно для новорожденнных.
Гемолитическая или надпеченочная желтуха – ускоренное образование билирубина в результате усиления внутрисосудистого гемолиза. К данному типу желтух относятся гемолитические анемии различного происхождения: врожденный сфероцитоз, серповидно-клеточная анемия, дефицит глюкозо-6-фосфатдегидрогеназы, отравление сульфаниламидами, талассемии, сепсис, лучевая болезнь, несовместимость крови. В данном случае гипербилирубинемия развивается за счет фракции непрямого билирубина. Гепатоциты усиленно переводят непрямой билирубин в связанную форму, секретируют его в желчь, в результате в кале увеличивается содержание стеркобилина, интенсивно его окрашивая. В моче возрастает содержание уробилина, билирубин отсутствует.У новорожденных гемолитическая желтуха может развиться как симптом гемолитической болезни новорожденного.
Механическая или подпеченочная желтуха развивается вследствие снижения оттока желчи при непроходимости желчного протока – желчные камни, новообразования поджелудочной железы, гельминтозы. В результате застоя желчи происходит растяжение желчных капилляров, увеличивается проницаемость их стенок. Не имеющий оттока в кишечник прямой билирубин поступает в кровь, в результате развивается гипербилирубинемия. В тяжелых случаях, вследствие переполнения гепатоцитов прямым билирубином, реакция конъюгации с глюкуроновой кислотой может нарушаться, присоединяется печеночно-клеточная желтуха (см ниже). В результате в крови увеличивается концентрация непрямого билирубина. В моче резко увеличен уровень билирубина (цвет темного пива) и снижено количество уробилина, практически отсутствует стеркобилин кала (серовато-белое окрашивание).
Паренхиматозная (печеночно-клеточная) желтуха – причиной может быть нарушение на всех трех стадиях превращения билирубина в печени: извлечение билирубина из крови печеночными клетками, его конъюгирование и секреция в желчь. Наблюдается при вирусных и других формах гепатитов, циррозе и опухолях печени, жировой дистрофии печени, при отравлении токсическими гепатотропными веществами, при врожденных патологиях. Так как нарушаются все процессы превращения билирубина в печени, гипербилирубинемия развивается за счет обеих фракций, преимущественно прямого билирубина. Концентрация его возрастает из-за нарушения секреции в желчь и увеличения проницаемости мембран клеток печени. Количество непрямого билирубина возрастает за счет функциональной недостаточности гепатоцитов и/или снижения их количества. В моче определяется билирубин (цвет крепкого черного чая), умеренно увеличена концентрация уробилина, уровень стеркобилина кала в норме или снижен.
Гемолитическая болезнь новорожденного.Причины:Несовместимость крови матери и плода по группе или по резус-фактору. Накопление гидрофобной формы билирубина в подкожном жире обуславливает желтушность кожи. Однако реальную опасность представляет накопление билирубина в сером веществе нервной ткани и ядрах ствола с развитием "ядерной желтухи" (билирубиновая энцефалопатия).
Клиническая диагностика: Проявляется сонливостью, плохим сосанием, умственной отсталостью, ригидностью затылочных мышц, тоническими судорогами, тремором конечностей, изменением рефлексов с возможным развитием глухоты и параличей.
Физиологическая (транзиторная) желтуха новорожденных.Причины:относительное снижение активности УДФ-глюкуронилтрансферазы в первые дни жизни, связанное с повышенным распадом фетального гемоглобина,абсолютное снижение активности УДФ-глюкуронилтрансферазы в первые дни жизни,дефицит лигандина,слабая активность желчевыводящих путей.Клиническая диагностика:окрашивание кожи на 3-4 день после рождения,гемолиза и анемии нет.Симптомы исчезают спустя 1-2 недели после рождения.
Желтуха недоношенных.Причины: относительное снижение активности УДФ-глюкуронилтрансферазы в первые дни жизни, связанное с повышенным распадом фетального гемоглобина,абсолютное снижение активности УДФ-глюкуронилтрансферазы в первые дни жизни,дефицит лигандина,слабая активность желчевыводящих путей.Клиническая диагностика:окрашивание кожи,гемолиза и анемии нет. Исчезает спустя 3-4 недели после рождения.
43. Белковые фракции плазмы крови. Функции белков плазмы крови. Гипо- и гиперпротеинемия, причины этих состояний. Индивидуальные белки плазмы крови: транспортные белки, белки острой фазы.
В плазме крови человека содержится около 100 различных белков. По подвижности при электрофорезе их можно грубо разделить на пять фракций: альбумин, α1-, α2-, β- и γ-глобулины. Разделение на альбумин и глобулин первоначально основывалось на различии в растворимости: альбумины растворимы в чистой воде, а глобулины -только в присутствии солей.
Альбумины. На долю альбуминов приходится более половины (55–60%) белков плазмы крови человека. Мол. масса альбумина около 70000. Сывороточные альбумины сравнительно быстро обновляются. Благодаря высокой гидрофильности, особенно в связи с относительно небольшим размером молекул и значительной концентрацией в сыворотке, альбумины играют важную роль в поддержании онк-го Р крови. Известно, что конц-ия альбуминов в сыворотке ниже 30 г/л вызывает значит изменения онкотического давления крови, что приводит к возникновению отеков. Альбумины выполняют важную фун-ю транспорта многих биологически активных в-в (в частности, гормонов). Они способны связываться с холестерином, желчными пигментами. Значительная часть кальция в сыворотке крови также связана с альбуминами. Норма: 42 г/л
Глобулины. группа глобулярных белков, растворимы в слабых растворах нейтральных солей, разбавленных кислотах и щелочах, нерастворимых в воде. Делится на фракции:
Фракция α-1-глобулинов включает в себя альфа-1-антитрипсин (основной компонент этой фракции) – ингибитор протеолитических ферментов, альфа-1-кислый гликопротеин (орозомукоид) – обладает широким спектром ф-ий, в зоне воспаления способствует фибриллогенезу, альфа-1-липопротеины(ф – участие в транспорте липидов), протромбин и транспортные белки: тироксинсвязывающий глобулин, транкортин (ф – связывание и тр-т кортизола и тироксина). Норма: 3г/л
Фракция α-2-глобулинов преимущественно включает белки острой фазы – альфа-2 макроглобулин, гаптоглобин, церулоплазмин, а также аполипопротеин В. Альфа-2-макроглобулин, являющийся основным компонентом фракции, участвует в развитии инфекционных и воспалительных реакций. Гаптоглобин – это гликопротеин, который образует комплекс с гемоглобином, высвобождающемся из эритроцитов при внутрисосудистом гемолизе. Церулоплазмин специфически связывает ионы меди, а также является оксидазой аскорбиновой кислоты, адреналина, диоксифенилаланина (ДОФА), способен инактивировать свободные радикалы. Альфа-липопротеины участвуют в транспорте липидов. Норма:6г/л
Фракция β-глобулинов содержит трансферрин (главный плазменный белок – переносчик железа), гемопексин (связывает гемм/метгем, вследствие чего предотвращает выведение его почками и потерю железа), компоненты комплемента (которые учавствуют в реакциях иммунитета), бета-липопротеины (транспорт холестерина и фосфолипидов) и часть Ig. Норма: 9г/л
Фракция γ-глобулинов состоит из иммуноглобулинов. Норма: 15 г/л. Иммуноглобулины, или антитела , обеспечивающие гуморальный иммунитет, синтезируются В-лимфоцитами или образующимися из них плазматическими клетками. Известно 5 классов иммуноглобулинов: IgG, IgA, IgM, IgD и IgE, при этом IgG, IgA и IgM – основные классы; IgD и IgE – минорные классы иммуноглобулинов плазмы человека. Молекула иммуноглобулина состоит из двух идентичных пар полипептидных цепей. Каждая пара в свою очередь состоит из двух разных цепей: легкой (L) и тяжелой (Н). Иммуноглобулины G – основные иммуноглобулины сыворотки, осуществляют гуморальную защиту организма от бактерий и вирусов и их растворимых токсинов (антигенов). Активно транспортируются через плаценту. У детей должная концентрация достигается только к 1,5-2 годам. Иммуноглобулины А осуществляют местный иммунитет на слизистых поверхностях дыхательных путей (носовой и бронхиальный секрет) и кишечного тракта. Они присутствуют в женском молозиве, слезе, слюне. После рождения количество секреторного IgA (на слизистых) достигает уровня взрослых уже на 2-3 неделе жизни, сывороточного IgA – только к 14-15 годам. Иммуноглобулины М появляются в процессе формирования иммунного ответа, являясь первичными антителами. Вскоре после рождения их уровень нарастает, достигает максимума к 9 месяцу жизни, после чего снижается и восстанавливается только к 20-30 годам. Иммуноглобулины Е вырабатываются плазматическими клетками и участвуют в аллергических реакциях организма. Иммуноглобулины D не имеют четкой сформированной функции. Предполагается, что они регулируют активность других иммуноглобулинов.
Белки плазмы крови выполняют несколько важных функций:
1. Поддерживают постоянство коллоидно-осмотического давления крови и постоянство V крови;
2. Определяют вязкость крови и сохраняют устойчивость эритроцитов и лейкоцитов в кровотоке, обеспечивают нормальный кровоток в капиллярах (реологические свойства крови);
3. Белковая буферная система участвует в регуляции кислотно-щелочного состояния;
4. Специализированные белки связывают и транспортируют углеводы, липиды, гормоны, лекарства, витамины, токсичные вещества;
5. Удерживают в связанном состоянии и транспортируют катионы кальция, магния, железа, меди и другие ионы, препятствуя их потере с мочой;
6. Специализированные белки участвуют в свертывании крови (фибриноген, протромбин, антигемофильный глобулин и др.);
7. Иммуноглобулины, факторы системы комплемента, трансферрин и пропердин (предупреждая инфекционный процесс и сохраняя резистентность организма) выполняют защитную функцию;
8. Являются резервом аминокислот.
9. Обеспечивают неспецифическую защиту организма при повреждении тканей – белки острой фазы.
Изменение соотношения белковых фракций плазмы крови наблюдается при многих заболеваниях при нормальном содержании общего белка (диспротеинемии). Диспротеинемии отмечаются чаще, чем изменение общего количества белка. При наблюдении в динамике могут характеризовать стадию заболевания, его длительность, эффективность проводимых лечебных мероприятий. Гиперпротеинемия – увеличение общего содержания белков плазмы. Диарея у детей, рвота при непроходимости верхнего отдела тонкой кишки, обширные ожоги могут способствовать повышению концентрации белков в плазме крови. Иными словами, потеря воды организмом, а следовательно, и плазмой приводит к повышению концентрации белка в крови (относительная гиперпротеинемия). При ряде патологических состояний может наблюдаться абсолютная гиперпротеинемия, обусловленная увеличением уровня γ-глобулинов: например, гиперпротеинемия в результате инфекционного или токсического раздражения системы макрофагов; гиперпротеинемия при миеломной болезни. В сыворотке крови больных миеломной болезнью обнаруживаются специфические «миеломные» белки. Появление в плазме крови белков, не существующих в норм условиях, принято называть парапротеинемией. Содержание белков в плазме достигает 100–160 г/л.
Гипопротеинемия, или уменьшение общего кол-ва белка в плазме крови, наблюдается гл образом при снижении уровня альбуминов. Выраженная гипопротеинемия – постоянный и патогенетически важный симптом нефротического синдрома. Содержание общего белка снижается до 30–40 г/л. Гипопротеинемия наблюдается также при поражении печеночных кл (острая атрофия печени, токсический гепатит и др.). Кроме того, гипопротеинемия может возникнуть при резко увеличенной проницаемости стенок капилляров, при белковой недостаточности (поражение пищеварительного тракта, карцинома и др.). Можно считать, что гиперпротеинемия, связана с гиперглобулинемией, а гипопротеинемия – с гипоальбуминемией.
БЕЛКИ-ПЕРЕНОСЧИКИ (транспортные белки), участвуют в переносе метаболитов, ионов и др. в-в по руслу крови, во внеклеточных тканевых жидкостях, а также внутрь клеток через биол. мембраны. Белки-переносчики, локализованные в биол. жидкостях, участвуют в переносе в-в, плохо р-римых в воде - жирных к-т, билирубина, нек-рых стероидов, ионов Fe и Сu, а также О2 и СО2. Липопротеины плазмы переносят липиды в виде белок-липидных комплексов. Самые легкие липопротеины - хиломикроны, 98% к-рых составляют нейтральные и кислые липиды и холестерин. Содержание белков-переносчиков в плазме крови и др. биол. жидкостях колеблется от 1 -2 мг (транскортин) до 3500-4500 мг (альбумин) на 100 мл. К мембранным белкам-переносчикам относятся белки систем трансмембранного переноса сахаров, АК и др. метаболитов. Эти белки интегрированы в составе биол. мембран. Во мн. случаях мембранные белки-переносчики образуют системы транспорта, в к-рых отдельные ф-ции разделены между разными белками. Захват глюкозы клетками обычно является опосредованным процессом. Сначала глюкоза связывается с переносчиком глюкозы (ГЛУТ), локализованным в клеточной мембране. Перенос глюкозы через мембрану обеспечивается за счет изменения конформации молекулы переносчика. АТФ-азные системы, транспортирующие ионы К+ и Na+ относятся к группе транспортных белков. Они осуществляют АТФ-зависимый активный транспорт через мембраны против концентрационного градиента. Несколько особняком стоят липидпереносящие белки, к-рые обнаружены как в мембранных структурах, так и в плазме крови. Они переносят лишь определенный тип фосфолипидов и участвуют в построении биол. мембран. К белкам-переносчикам можно отнести также нек-рые ферменты и ферментные системы. Гамма-глутамилтрансфераза)участвует в транспорте аминокислот в клетках животных. Большинство белков-переносчиков плазмы крови и нек-рые мембранные- гликопротеины. трансферин (бета глобулин) переносит Fe в тканитем самым предотвращает избыт накопление Fe и потерю его с мочой, трансферин накапл-ся у беременных женьщин. Гаптоглобин (альфа 2 глобулин): связывает гемоглобин, транспортирует В12, защит ф-ию, естеств. ингибитор катепсина В. Церуплазмин (альфа2 глобулин): переносчик и регулятор конц-ии ионов Cu особенно в печени., антиоксидант, фероксидазная и полиаминооксидазная активность.
Белки острой фазы – большая группа белков сыворотки крови (в основном α-глобулинов) с молекулярной массой от 12 кДа до 340 кДа и различными функциями, объединенных по общему признаку – быстрое и значительное увеличение концентрации при бактериальной, вирусной, паразитарной инфекции, физической или химической травме, токсической или аутоиммунной реакции, злокачественных новообразованиях. Смысл данного увеличения заключается в повышении резистентности кл к ок-ю, в ограничении повреждения тканей, в подавлении скорости размножения бактерий. Синтез белков острой фазы осущ-ся печенью, моноцитами, лимфоцитами, нейтрофилами. Их конц-ия зависят от стадии заболевания и/или от масштабов повреждений. Синтез белков включается и регулируется рядом медиаторов, среди которых цитокины, анафилотоксины и ГКС. Гаптоглобин (увел в 2-3 раза, особенно при раке, ожогах, хир-их вмешательствах, воспалении); церулоплазмин (антиоксидант); Трансферрин (содержание снижается, поэтому его называют негативным белком острой фазы.); С-реактивный белок. Отсутствует в сыворотке здорового человека, но обнаруживается при патологических состояниях, сопровождающихся некрозом (острая фаза ревматизма, инфаркт миокарда и др.). Предп-ся, что он способствует фагоцитозу. Интерферон — специфич белок, появляющийся в кл в рез-те проникновения вирусов. Он угнетает размн-е вирусов в кл. Обладает видовой специфичностью, но не абсолютной. Фибриноген, основная ф-я которого участие в свертывании крови. Синтез фибриногена начинается ч/з несколько часов после травмы с максимумом на конец 1 -2 суток. Увел-е конц-ии белков острой фазы в крови является хорошим индикатором не только явного, но и скрытого воспаления (атеросклероз).
44. Остаточный азот крови. Гиперазотемия, ее причины. Уремия.
Низкомолекулярные азотистые вещества представлены, главным образом, продуктами обмена белков и нуклеиновых кислот. Эти вещества остаются в надосадочной жидкости или фильтрате после осаждения крупномолекулярных белков и составляют остаточный азот крови(сумма всех азотсодержащих веществ крови после удаления из неё белков = Небелковый азот крови). Нормальное содержание 14,3 – 28,6 ммоль/л
Основными фракциями остаточного азота являются: 1) мочевина (примерно 50%; синтезируется в гепатоцитах из аммиака и карбамоилфосфата в орнитиновом цикле, с кровью разносится по всему организму, легко проникает через мембраны клеток и равномерно распределяется во внеклеточном и внутриклеточном пространствах. В почках мочевина полностью фильтруется, 40‑50% ее реабсорбируется в почечных канальцах и активно секретируется тубулярными клетками. Азот мочевины составляет около 90% всего выводимого азота.), 2) АКты (около 25%), 3) креатин и креатинин (7,5%; Креатин синтезируется из глицина, аргинина и метионина в ходе последовательных реакций в почках и печени. Отсюда креатин с током крови доставляется в мышцы, фосфорилируется с образованием креатинфосфата. Далее в ходе спонтанного гидролиза (1‑2%) либо после перенесения фосфорной группы от креатинфосфата на адениловую кислоту из креатина образуется креатинин, который выводится с мочой. В норме количество креатинина в моче соответствует мышечной массе тела и не зависит от суточного количества мочи), 4) полипептиды, нуклеотиды и азотистые основания (5%; поступают в кровь частично из кишечника (при переваривании белков), частично из тканей в результате распада тканевых белков), 5)мочевая кислота (4%; образуется главным образом в печени при распаде пуриновых нуклеотидов (аденина и гуанина), поступающих с пищей, эндогенных и синтезированных de novo. Около 80‑85% ее выделяется почками, остальное количество — через кишечник. Почечная экскреция мочевой кислоты зависит от профильтрованного количества, которое почти полностью реабсорбируется в проксимальном канальце, а также секреции и реабсорбции в дистальном канальце, в итоге выводится около 10% профильтрованной мочевой кислоты. В плазме крови мочевая кислота находится в виде урата натрия в концентрации, близкой к насыщению. Поэтому при превышении в крови нормальных значений существует возможность кристаллизации уратов), 6) аммиак и индикан (0,5%; Индикан представляет собой калиевую или натриевую соль индоксилсерной кислоты, образующейся в печени при обезвреживании индола. Индол появляется в кишечнике при гниении белков из аминокислоты триптофана. Кроме индоксилсерной кислоты в печени образуется и индоксилглюкуроновая кислота. Оба производных индола водорастворимы и удаляются с мочой).
У здорового человека колебания в содержании небелкового (остаточного) азота крови незначительны и в основном зависят от количества поступающих с пищей белков. При ряде патологических состояний уровень небелкового азота в крови повышается. Это состояние носит название азотемии. Увеличение фракций остаточного азота (азотемия) по своему характеру может быть абсолютным, связанным с действительным накоплением азотистых компонентов в крови, и относительным, связанным с дегидратацией. В свою очередь, абсолютная азотемия может быть ретенционная и продукционная.
Ретенционная азотемия развивается в результате недостаточного выделения с мочой азотсодержащих продуктов при нормальном поступлении их в кровяное русло. Она в свою очередь может быть почечной и внепочечной. При почечной ретенционной азотемии концентрация остаточного азота в крови увеличивается вследствие ослабления очистительной (экскреторной) функции почек (заболевания клубочков — нефриты, туберкулез почек, нефросклероз и т.д.). Резкое повышение содержания остаточного азота происходит в основном за счет мочевины. В этих случаях на долю азота мочевины приходится 90% небелкового азота крови вместо 50% в норме. Внепочечные в свою очередь подразделяются на надпочечные (результат нарушений гемодинамики и падения фильтрационного давления при сердечно-сосудистой недостаточности, снижении артериального давления) и подпочечные (при гипертрофии или аденоме простаты, почечнокаменной болезни - наличие препятствия оттоку мочи после ее образования в почке).
Продукционная азотемия развивается при избыточном поступлении азотсодержащих продуктов в кровь, как следствие усиленного распада тканевых белков при обширных воспалениях, ранениях, ожогах, кахексии и др. Нередко наблюдаются азотемии смешанного типа.
Уреми́я (от греч. uron—моча и haima— кровь), — острое или хроническое самоотравление организма, обусловленное почечной недостаточностью; накопление в крови главным образом токсических продуктов азотистого обмена (азотемия), нарушения кислотно-щелочного и осмотического равновесия.
Проявления: вялость, головная боль, рвота, диарея, кожный зуд, судороги, кома и др.
45. Основные биохимические функции и особенности печени.
Печень– самый крупный орган в организме человека, состоит примерно из 300 млрд клеток, 80% из которых составляют гепатоциты. Масса печени достигает 1,5 кг, что составляет 2-3% от массы тела взрослого человека. На печень приходится от 20 до 30% потребляемого организмом кислорода. Клетки печени занимают центральное место в реакциях промежуточного метаболизма и поддержании гомеостаза крови. Поэтому в биохимическом отношении гепатоциты являются как бы прототипом всех остальных клеток. Такие разнообразные функции обусловлены особенностями строения печени и ее отдельных клеток. Гепатоцит имеет хорошо развитую систему эндоплазматического ретикулума (ЭР), причем как гладкую, так и шероховатую. Одна из главных функций ЭР - синтез белков, которые используются другими органами и тканями (альбумины), или ферментов работающих в печени. Кроме того, в ЭР синтезируются фосфолипиды, триглицериды и холестерол. Гладкий ЭР содержит ферменты детоксикации ксенобиотиков.
Функции печени:1. Пищеварительная – печень является крупнейшей пищеварительной железой. Она образует желчь, включающую воду (82%), желчные кислоты (12%), фосфатидилхолин (4%), холестерол (0,7%), прямой билирубин, белки, продукты распада стероидных гормонов, электролиты и другие соединения крови, лекарственные средства и их метаболиты. Желчь обеспечивает эмульгирование и переваривание жиров пищи, стимулирует перистальтику кишечника. Из крови воротной вены желчные кислоты поглощаются симпортом с ионами Na+. В желчный капилляр синтезированные de novo и используемые вторично желчные кислоты секретируются АТФ-зависимым транспортом.
Дата добавления: 2015-07-24; просмотров: 855;