Гиперпространственная физика 1 страница

 

Первым, на что обратили внимание Хогленд и Торан, было то, что во всей наблюдаемой Солнечной системе планетарные возмущения и приливы энергии в основном группируются вокруг ключевой широты 19,5°. Большое темное пятно на Нептуне, Большое красное пятно на Юпитере, извергающиеся вулканы на спутнике Юпитера Ио, Олимпийские Горы на Марсе (самые большие в Солнечной системе вулканы) и земные вулканы Мауно Кеа на Гавайях находятся на широте 19,5° или очень близко от нее.

 

Рис. 2-1. «Большое красное пятно» на Юпитере на 19,5°южной широты находится в точном соответствии с предсказанием модели «гиперпространственной физики» Хогленда и Торана.

 

Более того, группы пятен на Солнце, возникающие из-за повышенного выделения энергии на пиках цикла солнечной активности, также сконцентрированы на широте 19,5°. Любопытно, что приливы энергии происходят в северном или южном полушарии в зависимости от центровки расположения источников магнитного поля. Если поле фиксируется на Южном полюсе, возмущение возникает на широте 19,5° в северном полушарии. И наоборот, если поле фиксируется на Северном полюсе, возмущение возникает на юге. Возмущения локализованы так, словно внутри планет имеются «гигантские тетраэдры», управляющие физикой всплесков энергии и заставляющие их подчиняться загадочным правилам.

 

Избыточное тепло

 

Еще одним важным выводом из наблюдений, выполненных Хоглендом и Тораном в первые же дни, оказалась идея о роли их теоретической «тетраэдральной» физики в других загадочных процессах в Солнечной системе.

Начиная с середины 60-х, в наземных наблюдениях Солнечной системы стало отмечаться поразительное явление — аномальное внутреннее инфракрасное излучение, идущее с планеты Юпитер (рис. 2-2). Позднее наблюдения, произведенные космическими аппаратами «Пионер» и «Вояжер» в 70-х—80-х, добавили другие «гигантские газовые планеты» — Сатурн, Уран и Нептун — в список миров Солнечной системы, которые каким-то образом, без наличия внутренних термоядерных процессов (как это происходит у звезд), излучают в космос больше энергии, чем получают от Солнца30.

В ходе многочисленных дискуссий были установлены три возможных внутренних источника этого аномального «инфракрасного избытка»:

1. Первичное тепло. Остаточное «ископаемое термальное эхо» огромной энергии, связанной с расширением и сжатием планеты в ходе ее формирования. В соответствии с этим сценарием энергия сохраняется внутри планеты буквально миллиарды лет и при этом медленно излучается в космос.

 

Рис. 2-2. Аномальное излучение энергии «выше единицы» Юпитером. Нижняя кривая обозначает энергию, которую Юпитер поглощает из солнечного света; верхняя кривая — внутреннее излучение энергии Юпитером. Наблюдение того, что Юпитер излучает больше энергии в пространство, чем получает от Солнца, является одной из главных загадок планет Солнечной системы: «откуда берется избыток энергии?» (данные НАСА; графика, миссия «Энтерпрайз»).

 

2. Модель текучести гелия. Нагревание, происходящее из-за окончательного разделения легких элементов (гелия от водорода) в планетах — так называемых «газовых гигантах». Отделение высвобождает потенциальную энергию, когда гелий проваливается к центру планеты (что является формой сверхмедленного, непрекращающегося сжатия под действием силы тяжести).

3. Радиоактивный распад. Аномальное высвобождение энергии из-за избыточного радиоактивного распада тяжелых элементов, сконцентрированных внутри массивного «каменного ядра» газовых гигантов.

Из этих трех объяснений «энергетических аномалий» только первое применимо к Юпитеру. Из-за своей массы (318 «земных» масс) Юпитер попадает в категорию миров, которые могут удерживать это первичное тепло на всем протяжении существования Солнечной системы (почти пять миллиардов лет) излучать его в количествах, поддающихся наблюдению.

Однако когда ученые попытались на самом деле измерить количество избыточного тепла, которое излучает Юпитер, выяснилось, что «модель первичного тепла» недостаточна для оценки инфракрасного излучения Юпитера. Даже сегодня коэффициент нынешнего соотношения поглощаемой солнечной энергии (пять миллиардов в год) и излучаемой внутренней энергии Юпитера по-прежнему два к одному. Это намного превосходит тот избыток, который можно было бы предположить по прошествии столь огромного промежутка времени. После второго полета «Вояжера» в 80-х все стали склоняться ко второй версии объяснения «внутреннего тепла» — «Модели текучести гелия» — из-за теплового избытка, излучаемого Сатурном. Однако, по причине сравнительно небольшой массы планеты (в 30 раз меньше земной), только третья версия — массированный внутренний радиоактивный распад — могла бы дать реальное объяснение еще более странному инфракрасному излучению Урана и Нептуна. При этом во всех трех объяснениях возникают серьезные трудности, если речь идет о планетах легче Юпитера.

Во время первого полета «Вояжера» к Урану и Нептуну его оборудование зафиксировало едва различимый (но все же заметный) «инфракрасный избыток» Урана, составлявший от 1,14 до 1. У Нептуна же, который, в сущности, является планетой-близнецом Урана, отношение внутреннего тепла к получаемому солнечному свету составляло, как ни удивительно, три к одному31.

Однако проводившиеся одновременно с этим гравиметрические измерения доплеровского эффекта не обнаружили аномального скопления тяжелых элементов возле ядер этих планет. Хотя именно это было бы необходимо, если бы наблюдаемый избыток инфракрасного излучения был на самом деле вызван концентрацией радиоактивных элементов внутри планет.

Будучи не в силах доказать модель радиоактивного распада, физики занялись поисками альтернативных объяснений избыточного выделения энергии Ураном. Вскоре они увлеклись одной из черт, которая выделяла Уран из ряда других тел Солнечной системы, — его ярко выраженный «осевой наклон».

В сравнении с другими планетами нашей системы, Уран имеет «отклонение» (технический термин) около 98° плоскости своей орбиты относительно Солнца. Нептун в этом смысле «более нормальный» — около 30°. (Для сравнения, отклонение Земли составляет около 23,5°.) Это приводит к новой версии, «модели последней коллизии». В соответствии с ней, задолго до своего формирования Уран в силу неизвестных причин столкнулся с другим крупным объектом, возможно, со странствующей малой планетой. По теории, это, в дополнение к уже имеющейся на планете ситуации, могло значительно увеличить количество в геологическом смысле «новейшей» внутренней энергии Урана, повышая внутреннюю температуру до определенного значения. Эта модель доказывает, что повышенная температура в Уране, вызванная крупной космической коллизией, могла вызвать существующее в настоящем избыточное инфракрасное излучение, что и было отмечено «Вояжером» в 1986 году.

К сожалению, и в этой модели быстро обнаружились «узкие» места. Во-первых, Уран излучает всего лишь «немного больше единицы» (больше исходящей, чем поглощаемой энергии) на том расстоянии, на котором он находится от Солнца, в то время как Нептун излучает почти в три раза больше энергии, чем получает от солнца. Если для сравнения «уравнять» эти планеты (т.е. если принять во внимание их различные расстояния от Солнца), их абсолютное внутреннее излучение энергии «немного больше единицы», то есть почти одинаково. Если бы модель последней коллизии была верна, Уран должен бы был излучать намного больше энергии, чем Нептун. Фактически же разницы почти нет. Если малая планета, астероид или еще больший по размеру объект относительно недавно столкнулся с Ураном, причиной избыточного тепла планеты послужило явно не это.

Хогленд предположил, что может существовать внешняя причина аномальной теплоотдачи. Возможно, это то, что вызывает приливы энергии на широте 19.5°. Но что может быть источником этого загадочного избытка, объяснение которого не укладывается в рамки обычных объяснений и подтверждает мистические геометрические правила?

 

Скрытая история

 

Здесь Хогленд и Торан столкнулись с дилеммой. Они уже сделали ряд несомненно важных наблюдений и нашли важные связи, требующие тщательного исследования — но в каком контексте? Этого было недостаточно, чтобы доказать, что руины Сидонии сообщают знание тетраэдральной геометрии и что эта геометрия, вероятно, отражает определенные физические эффекты вращающихся тел Солнечной системы. Должна иметься последовательная модель механизма, который управлял бы всеми наблюдаемыми планетарными приливами энергии и аномальной теплоотдачей. Само их местоположение подразумевало, что существует основная физика, вызывающая приливы энергии.

Есть прекрасное природное объяснение «аномальной энергии», возникающей у небесных тел — к сожалению, более столетия ученые его всерьез не рассматривали. Хогленд обнаружил, что идея о том, что «СИЛЫ», такие как сила тяжести или магнетизм, могут быть выражены геометрически, становилась достаточно популярной в современной математике. Приняв это к сведению, он обратился к физическим теориям начала XIX века и выяснил, мо сам отец современной физики Джеймс Кларк Максвелл иногда занимался уравнениями, которые, по-видимому, соответствуют тому, что Торан и Хогленд наблюдали на других планетах. Максвелл постоянно доказывал, что единственный путь решения определенной физической проблемы — это принятие во внимание такого феномена, как трехмерное «отражение» объектов, существующих в пространствах большей размерности. После смерти Максвелла это большеразмерное, или «скалярное», слагаемое было удалено из уравнений Оливером Хевисайдом, а получившиеся в результате этого «классические уравнения Максвелла» легли в основу современных моделей электромагнитных сил. Но если оригинальные работы Максвелла были верны, даже в урезанном виде, это означает, что его оригинальная концепция могла бы объяснить различные планетарные феномены, наблюдаемые Хоглендом и Тораном. Хогленд приступил к более пристальному изучению этой первой модели «гиперпространственной физики».

Хогленд выяснил, что некоторые современные математики уже начали геометрическое моделирование этих возможных величин. Известные топологи (в частности, выдающийся геометр Г.С.М. Коксетер) проделали большую работу по отображению пространственных свойств вращающейся «гиперсферы» — сферы, которая существует в более сложном, чем обычное трехмерное, пространственном измерении. Загадочная математика, описывающая эту «гиперсферу» и множественные связанные с ней пространственные измерения, является столь сложной, что доступна пониманию только математиков-профессионалов. При этом намного легче определить и предугадать характерные черты этой многомерной физики, их отражение в нашем трехмерном мире. Уравнения Коксетера предсказали, что такая фигура, если бы она вращалась, создавала бы в трехмерной геометрии сферы возмущения (как раз такие, как наблюдаемая динамика «Большого красного пятна» на Юпитере), причем на характерной широте — 19,5°.

Именно это и отмечали Хогленд и Торан в своих наблюдениях вращающихся планет Солнечной системы и их спутников. Если эти наблюдения действительно были связаны с пространственными свойствами «вращающейся гиперсферы», это означало не только то, что вращающиеся планеты существуют в многомерных, более сложных размерностях пространства, но также и то, что эта новая физика в потенциале может обеспечить безгранично большие объемы энергии, управляющей наблюдаемой динамикой атмосферы, внутренним движением жидкости, геологическими «приливами» на поверхности планет — всем! В конце концов, даже самой «жизнью»...

Фундаментальным камнем гиперпространственной физической модели является представление о том, что эти «более высокие» размерности пространства не просто существуют, но и лежат в основе того, на что опирается вся наша трехмерная действительность. Более того, все в наблюдаемом трехмерном мире на самом деле управляется математически моделируемой «информационной передачей» от этих более сложных размерностей. Эта «информационная передача» может быть просто результатом изменений в геометрии взаимосвязанных систем, скажем, изменением в орбитальных параметрах планет, таких как Юпитер или Земля. Поскольку мы ограничены в своем восприятии трехмерностью мира, в котором живем, мы не можем «увидеть» эти более высокиe размерности. Однако мы можем увидеть (и измерить) изменения в этих более высоких размерностях, которые одновременно проецируются на нашу реальность. Изменения в геометрии высоких размерностей воспринимаются в нашей трехмерной реальности как «выделение энергии» — наподобие различных планетарных энергетических «приливов», о которых шла речь выше.

Следовательно, вопреки постулатам Эйнштейна, гиперпространственная модель безоговорочно утверждает, и фактически это данность: мгновенное действие на расстоянии» в нашем мире несомненно возможно, и причина этого — пространственная информационная передача. Модель прогнозирует, что эффекты «причины», какой бы она ни была в наших трех измерениях, в воспринимаемом нами мире могут ощущаться поддающимся измерению и прогнозированию образом со скоростью несоизмеримо большей, чем скорость света. Вселенная совершает это, казалось бы, невозможное движение посредством трансформации и передачи информации (как иной «энергии») через «гиперпространство», т.е. эти более высокие размерности пространства. В знакомых нам трех измерениях эта информация/энергия затем преобразовывается в известные формы энергии, такие как свет, тепло и даже тяжесть.

Поэтому крупномасштабные изменения в одной гравитационно-зависимой системе, например, масштаба планеты в Солнечной системе, могут иметь мгновенное, поддающееся измерению влияние на другие тела в этой системе — при условии, что имеется «условие резонанса» («согласованное» соединение) между этими объектами в гиперпространстве. Таким образом, гиперпространственная модель доказывает, что все, даже далеко отстоящие трехмерные объекты, такие как отдаленные планеты, в конечном итоге соединяются путем такого четырехмерного взаимодействия. Это означает, что «причина» в одном месте (например, на Юпитере) может иметь «влияние» на другое место (например, Солнце) — без участия поддающейся измерению силы трехмерного пространства (такой, как электромагнитная), определенным способом пройдя расстояние в трехмерном пространстве «между измерениями».

Общепринятая физика утверждает, что этот феномен, называемый «нелокальность», который на протяжении десятилетий наблюдался в лабораторных экспериментах32, является просто сложной «квантовой реальностью», ограниченной ультракороткими расстояниями на субатомном уровне, которая не воздействует, не имеет физической возможности воздействовать на большие по размеру объекты на больших расстояниях (например, на планеты, звезды или сами галактики). Поскольку в нашем трехмерном макрокосмосе скорость света теоретически считается предельной, ничто не может оказывать измеримое воздействие на любой объект со скоростью, превышающей скорость света. При этом сейчас уже полностью подтверждено существование таинственных сигналов, на макрорасстояниях проходящих между элементарными частицами быстрее скорости света, и даже связь между фотонами. В соответствии с сегодняшним пониманием предельности скорости света, основанным на уравнениях Максвелла для электромагнитного поля, только определенные виды энергии, такие как электромагнитное излучение, могут прямо проходить большие расстояния в вакуумном пространстве.

В этой классической «эйнштейновской» физике нет гипотетической среды, «эфира», как его называли во времена Максвелла, для передачи поперечных волн электромагнитного излучения в вакууме. В гиперпространственной модели эфир появляется вновь — как реальная среда трансформации между более большими пространственными мирами и нашими размерностями — посредством того, что назвали «полем кручения» (слово torsion — «кручение» происходит от того же корня, что и слово torque — «вращающий», и означает «вращать» — to spin).

Таким образом, поле кручения является «спиновым полем» — ключевой точкой, к которой мы еще вернемся. Следовательно, торсионно-эфирное поле является не такой электромагнитной средой, какой ее понимали в XIX веке, а восприимчивым к спину, геометрическим эфирным состоянием — в соответствии с чем, гиперпространственная информация/энергия может быть обнаружена в нашем измерении через вращающиеся вихревые физические системы. Вопреки догмам общепринятой физики, большое количество экспериментов, проводившихся на протяжении более ста лет, полностью подтвердили различные аспекты этой неэлектромагнитной «среды спинового поля». Расчеты и их графические отображения, моделирующие эту теоретическую космологию сегодня, к сожалению, так же сложны и запутанны, как и все остальное в современной науке. Однако эти расчеты подкреплены огромным количеством теоретических исследований и захватывающих лабораторных экспериментов, которые секретно велись в России в течение более 50 лет — и стали доступны широкой общественности только сейчас (через Интернет), после развала империи Советов.

Хотя имеются серьезные основания, и количество их все больше увеличивается, подозревать, что гиперпространственная/торсионная модель в конечном итоге может оказаться «Теорией Всего», большинство современных физиков особенно на Западе) по-прежнему отвергают эту идею и упрямо не желают двигаться в этом направлении».

Хотя такие настроения преобладали среди физиков Запада не всегда.

 

Гиперпространство

 

Математические и физические параметры, необходимые для пропуска этой «энергии/ информации» в данную размерность пространства из потенциальной «n-размерности», первоначально были обоснованы в XIX веке в работах нескольких создателей современной математики и физики. В их числе были немецкий математик Георг Риман, шотландский физик сэр Уильям Томпсон (который за научные заслуги получил титул барона Кельвина), шотландский физик Джеймс Клерк Максвелл и английский математик сэр Уильям Роуан Гамильтон.

Риман при помощи математики посвятил научное сообщество XIX века (если не вообще все Викторианское общество) в необычную идею «гиперпространства» 10 июня 1854 г. Представляя ее в Геттингенском университете в Германии, Риман предложил первое математическое описание возможного существования «более больших, невидимых размерностей», дав ему обманчиво простое название «О гипотезах, лежащих в основаниях геометрии».

Труд Римана представлял собой критику основных положений существовавшей два тысячелетия «евклидовой геометрии» — упорядоченных прямолинейных законов «обычного» трехмерного мира. Риман же предложил четырехмерную реальность (в которой наша трехмерная реальность является только «подгруппой»), где геометрические правила радикально отличаются обычных, но также имеют внутреннюю согласованность. Более того, Риман предположил, что основные законы природы в трехмерном пространстве, три загадочные силы, известные в физике — электростатика, магнетизм и тяготение, — в четырехмерном пространстве объединяются, а в нашем трехмерном пространстве просто «выглядят иначе» из-за «смятой геометрии». В сущности, он доказывал, что тяготение, магнетизм и электричество — это одно, это — энергии, идущие из более высоких измерений,

Риман выдвигал предположение, в корне отличное от теорий Ньютона о «силах, создающих действие на расстоянии». Эти теории на протяжении более 200 лет давали объяснение «магическим» свойствам магнитного и электрического притяжения и отталкивания, искривлению траекторий движения планет и падению яблок под действием силы тяжести. В противоположность Ньютону, Риман предполагал, что эти «явные» силы являются прямым следствием прохождения объектов через трехмерную геометрию, искривленную вторжением геометрии четырехмерного пространства.

Очевидно, что Максвелл и другие «гиганты» физики XIX века (лорд Кельвин, например), как и все поколение математиков того времени (Кэли, Тейт и др.), близко к сердцу приняли идеи Римана. Выделение Максвеллом четырехмерных «кватернионов» в качестве математических операторов для урав­нений сил и описания электрического и магнитного взаимодействия ясно показывает, что он поверил в идеи Римана так же, как и его удивительные экскурсы в поэзию, в которых он воспевал воздействие «миров высоких измерений», в том числе и его размышления об их связи с глубинами человеческой души33.

В 1867 г., после десятилетий исследований фундаментальных свойств материи и пространства, Томпсон выдвинул радикально новое объяснение основных свойств твердых объектов: существо-вание «вихревых атомов». Это прямо противоречило господствовавшим в то время теориям о материи, где атомы по-прежнему рассматривались как бесконечно «малые твердые тела, как представил их [римский поэт] Лукреций и подтвердил Ньютон...». «Вихревые атомы» Томпсона — невидимые крошечные самоподдерживающиеся «водовороты» в так называемом «эфире», который, как полагал Томпсон и его современники, простирается во Вселенной как несжимаемая всепроникающая текучая среда (жидкость).

В то же время, когда Томпсон опубликовал свою революционную модель атома, Максвелл, основываясь на более ранних исследованиях «эфирной жидкости» Томпсона, далеко продвинулся по пути разработки успешной «механической» вихревой модели самого «несжимаемого эфира», в котором могли бы существовать вихревые атомы Томпсона — модель, полученную частично как результат лабораторных исследований упругих и динамических свойств твердых тел. В итоге в 1873 году Максвелл смог объединить результаты двухвековых научных исследований электричества и магнетизма во всеобъемлющую электромагнитную теорию световых колебаний, которые переносятся в пространстве этой «несжимаемой и универсальной в контексте высокой напряженности эфирной средой».

Математической основой удачного объединения Максвеллом этих двух загадочных сил в физике XIX века стали «кватернионы». Термин изобретен (принят, если быть более точным) в 40-х годах XIX века математиком сэром Уильямом Роуаном Гамильтоном для «упорядоченных пар сложных чисел». По Мильтону, сами сложные числа представляли собой не что иное, как «пары действительных чисел, которые прибавляются или умножаются в соответствии с определенными формальными правилами». В 1897 А.С. Гатауэй в труде «Кватернионы как числа четырехмерного пространства» формально расширил идею Гамильтона о кватернионах как «наборах четырех действительных чисел» до идеи четырех измерений простраиства34.

По Максвеллу, действие на расстоянии возможно в «эфире», который он определял как высокую пространственную размерность — или то, что сегодня мы называем «гиперпространство». Другими словами, отец современной земной электромагнитной физики пришел к тому же заключению, что и Хогленд в своих умозаключениях о «марсианской архитектуре» в Сидонии.

Может показаться, что к делу это имеет весьма далекое отношение, однако если прочесть соответствующие строки из поэмы Максвелла, представленной Фонду Портрета Кэли в 1887 г., становится понятно, что он знал:

 

«Кубические поверхности! Тройки и девятки, вокруг него соберите ваши 27 линий — печать Соломона в трех измерениях...»

 

Это четкое описание «Печати Соломона в трех измерениях» является прямой отсылкой к геометрическим и математическим основам печально известной «описанной тетраэдральной геометрии», увековеченной в Сидонии. Если взять базовую фигуру тетраэдра — равносторонний треугольник — и добавить второй равносторонний треугольник прямо напротив первого, а затем описать вокруг этой фигуры окружность, мы получим знакомую нам «Звезду Давида» — «Печать Соломона», о которой говорит Максвелл (рис. 2-3). В этой фигуре вершины сдвоенного треугольника соприкасаются с окружностью в полюсах под утлом 19,5°. Это напрямую связано с идентичной гиперпространственной кватернионной геометрией, физическое воздействие которой сегодня мы повторно открываем по всей Солнечной системе. И, конечно же, трехмерное изображение этой «Печати Соломона» представляет собой тетраэдр в видe двойной звезды, вписанной в сферу (рис. 2-4).

Отсылка к «двадцати семи линиям» также вполне ясно отправляет нас к двухмерному изображению двойного тетраэдра, заключенного в «гиперкуб», что является базовой двухмерной формой шестигранника (рис. 2-3).

Рис. 2-3. Фигура из семи и двадцати Рис. 2-4. «Печать Соломона в трех

линий, как определил Максвелл, яв- измерениях» Максвелла — двойной

ляется двухмерным отображением тетраэдр, вписанный в сферу.

трехмерного сдвоенного тетраэдра,

заключенного в гиперкуб.

 

Тяжелая рука Хевисайда

 

К несчастью для науки, после смерти Максвелла два других «математических физика» XIX века, Оливер Хевисайд и Уильям Гиббс, свели его оригинальные уравнения к четырем простым (к сожалению, неполным) выражениям. Хевисайд открыто выражал неприятие кватернионов и так никогда и не понял связи между критически скалярными (не имеющее направления измерение, например, скорость) и направленными (направленная величина, например, перемещение) компонентами, как их употреблял Максвелл для описания потенциальной энергии пустоты («яблоки и апельсины», как он называл их). Поэтому, пытаясь «упростить» оригинальную теорию Максвелла, Хевисайд устранил из нее более двадцати кватернионов.

Однажды журнал «Сайентифик Американ» назвал Оливера Хевисайда человеком, «получившим знания самостоятельно... никогда не обучавшимся в университетах... но при этом обладавшим выдающейся и непостижимой способностью получать математические результаты значительной сложности, не проходя через осознанный процесс доказательства». По другим свидетельствам, в действительности Хевисайд чувствовал, что использование Максвеллом кватернионов и описания с их помощью «потенциала» пространства было «мистическим и должно было быть удалено из теории». Радикально редактируя оригинальный труд Максвелла после его смерти, вычеркивая скалярный компонент кватернионов и удаляя гиперпространственные характеристики векторного компонента, Хевисайд это и сделал35.

Это означает, что четыре оставшихся классических «уравнения Максвелла» в том виде, в котором они появляются в каждом тексте по электричеству и физике как фундамент всей электротехники и электромагнитной теории XIX века никогда не встречались в трудах Максвелла. И все изобретения, от радио до радара, от телевидения до вычислительной техники, все науки, от химии до физики и астрофизики, которые имеют дело с процессами электромагнитного излучения, основаны на этих мнимых «уравнениях Максвелла».

На самом же деле это уравнения не Максвелла, а Хевисайда. Конечным результатом стало то, что физика потеряла свои многообещающие теоретические начала как настоящая «гиперпространствен-ная» наука более ста лет назад, а вместо этого, благодаря Хевисайду, стала заниматься весьма ограниченным подразделом сложнейшей теории электромагнитного поля.

Сильнейший удар сторонники эфирной модели получили в 1887 году, когда опыты Майкельсона-Морли убедительно доказали, что «материального эфира» не существует. Однако «благодаря» Хевисайду из внимания было упущено, что сам Максвелл никогда не верил в материальность эфира — он только делал предположение о гиперпространственном эфире, который мгновенно соединяет все во Вселенной. Главная причина путаницы, окружающей настоящую теорию Максвелла, а не то, во что ее превратил Хевисайд, кроется в математике — системе обозначений, которую, вероятно, лучше всех описал Х.Дж. Джозеф: «Алгебра кватернионов Гамильтона, в отличие от алгебры векторов Хевисайда, является не просто сокращенным способом картезианского анализа, а отельным разделом математики со своими собственными правилами и специальными теоремами. Фактически кватернион — это обобщенное, или гиперкомплексное, число».

В 1897 г. Хатауэй опубликовал работу, в которой эти гиперкомплексные числа конкретно определяются как «числа в четырехмерном пространстве». Таким образом, очевидное игнорирование современными физиками открытия сделанного Максвеллом в XIX веке — математически обоснованной четырехмерной теории, — происходит из-за недостатка знания истинной природы кватернионной алгебры Гамильтона. И за исключением случая, если вам удастся найти оригинал издания «Трактата» Максвелла 1873 года, очень сложно проверить существование «гиперпространственной» системы обозначений Максвелла, поскольку к 1892 году третье издание уже содержало «коррекцию» употребления Максвеллом «скалярных потенциалов». Такая «коррекция» удаляет из всей теории Максвелла понятие ключевого различия между четырехмерным «геометрическим потенциалом» и трехмерным «векторным полем». По этой причине многие современные физики, например, Мицуи Каку, очевидно, просто не понимают, что фактически оригинальные уравнения Максвелла были первой геометрической теорией четырехмерного поля, выраженной в специальных терминах четырехмерного пространства — на языке кватернионов.

 

Повторное открытие

 

Одной из трудностей представления «высоких измерений» является то, что люди (а ученые — тоже люди), несомненно, спросят — «ну, и где это?!». Наиболее стойким аргументом против четырехмерной геометрии Римана, Кэли, Тейта и Максвелла является то, что ни одно экспериментальное доказательство «четвертого измерения» не является достаточно убедительным. Одним из самых простых для понимания аспектов «большей размерности» было то, что существо из пространства меньшей размерности (например, плоский обитатель двухмерной страны «Флэтляндии»), вступая в наше третье измерение, должно сразу же исчезать из мира меньшей размерности (и, следовательно, тут же появляться в большей размерности, будучи геометрически искаженным). По возвращении в пространство своей размерности оно просто должно «магически» появиться вновь.








Дата добавления: 2015-07-24; просмотров: 1872;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.023 сек.