Назначение и характеристики систем памяти ЭВМ
В любой ЭВМ, вне зависимости от ее архитектуры, программы и данные хранятся в памяти. Функции памяти обеспечиваются запоминающими устройствами (ЗУ), предназначенными для фиксации, хранения и выдачи информации в процессе работы ВМ. Процесс фиксации информации в ЗУ называется записью, процесс выдачи информации – чтением или считыванием, а совместно их определяют как процессы обращения к ЗУ.
Основными характеристиками, которые необходимо учитывать, рассматривая конкретный вид ЗУ, являются:
- место расположения;
- емкость;
- единицу пересылки;
- метод доступа;
- быстродействие;
- физический тип;
- физические особенности;
- стоимость.
По месту расположения ЗУ разделяют на процессорные, внутренние и внешние. Наиболее скоростные виды памяти (регистры, кэш-память первого уровня) обычно размещают на общем кристалле с центральным процессором, а регистры общего назначения вообще считаются частью ЦП. Вторую группу (внутреннюю память) образуют ЗУ, расположенные на системной плате. К внутренней памяти относят основную память, а также кэш-память второго и последующих уровней (кэш-память второго уровня может также размещаться на кристалле процессора). Медленные ЗУ большой емкости (магнитные и оптические диски, магнитные ленты) называют внешней памятью, поскольку к ядру ВМ они подключаются аналогично устройствам ввода/вывода.
Емкость ЗУ характеризуют числом битов либо байтов, которое может храниться в запоминающем устройстве. На практике применяются более крупные единицы, а для их обозначения к словам «бит» или «байт» добавляют приставки: кило, мега, гига, тера, пета, экза (kilo, mega, giga, tera, peta, exa). Стандартно эти приставки означают умножение основной единицы измерений на 103, 106, 109, 1012, 1015и 1018 соответственно. В вычислительной технике, ориентированной на двоичную систему счисления, они соответствуют значениям достаточно близким к стандартным, но представляющим собой целую степень числа 2, то есть 210, 220, 230, 240, 250, 260. Во избежание разночтений, в последнее время ведущие международные организации по стандартизации, например IEEE (Institute of Electrical and Electronics Engineers), предлагают ввести новые обозначения, добавив к основной приставке слово binary (бинарный): kilobinary, megabinary, gigabinary, terabinary, petabinary, exabinary. В результате вместо термина «килобайт» предлагается термин «киби-байт», вместо «мегабайт» – «мебибайт» и т.д. Для обозначения новых единиц предлагаются сокращения: Ki, Mi, Gi, Ti, Pi и Ei соответственно.
Важной характеристикой ЗУ является единица пересылки. Для основной памяти (ОП) единица пересылки определяется шириной шины данных, то есть количеством битов, передаваемых по линиям шины параллельно. Обычно единица пересылки равна длине слова, но не обязательно. Применительно к внешней памяти, данные часто передаются единицами, превышающими размер слова. Такие единицы называются блоками.
При оценке быстродействия необходимо учитывать применяемый в данном типе ЗУ метод доступа к данным. Различают четыре основных метода доступа:
1. Последовательный доступ. ЗУ с последовательным доступом ориентировано на хранение информации в виде последовательности блоков данных, называемых записями. Для доступа к нужному элементу (слову или байту) необходимо прочитать все предшествующие ему данные. Время доступа зависит от положения требуемой записи в последовательности записей на носителе информации и позиции элемента внутри данной записи. Примером может служить ЗУ на магнитной ленте.
2. Прямой доступ. Каждая запись имеет уникальный адрес, отражающий ее физическое размещение на носителе информации. Обращение осуществляется как адресный доступ к началу записи, с последующим последовательным доступом к определенной единице информации внутри записи. В результате время доступа к определенной позиции является величиной переменной. Такой режим характерен для магнитных дисков.
3. Произвольный доступ. Каждая ячейка памяти имеет уникальный физический адрес. Обращение к любой ячейке занимает одно и то же время и может производиться в произвольной очередности. Примером могут служить запоминающие устройства основной памяти.
4. Ассоциативный доступ. Этот вид доступа позволяет выполнять поиск ячеек, содержащих такую информацию, в которой значение отдельных битов совпадает с состоянием одноименных битов в заданном образце. Сравнение осуществляется параллельно для всех ячеек памяти, независимо от ее емкости. По ассоциативному принципу построены некоторые блоки кэш-памяти.
Быстродействие 3У является одним из важнейших его показателей. Для количественной оценки быстродействия обычно используют три параметра:
1. Время доступа (Тд). Для памяти с произвольным доступом оно соответствует интервалу времени от момента поступления адреса до момента, когда данные заносятся в память или становятся доступными. В ЗУ с подвижным носителем информации – это время, затрачиваемое на установку головки записи/считывания (или носителя) в нужную позицию.
2. Длительность цикла памяти или период обращения (Тц). Понятие применяется к памяти с произвольным доступом, для которой оно означает минимальное время между двумя последовательными обращениями к памяти. Период обращения включает в себя время доступа плюс некоторое дополнительное время. Дополнительное время может требоваться для затухания сигналов на линиях, а в некоторых типах ЗУ, где считывание информации приводит к ее разрушению, – для восстановления считанной информации.
3. Скорость передачи. Это скорость, с которой данные могут передаваться в память или из нее. Для памяти с произвольным доступом она равна . Для других видов памяти скорость передачи определяется соотношением:
,
где TN –среднее время считывания или записи N битов;
ТА–среднее время доступа;
R –скорость пересылки в битах в секунду.
Говоря о физическом типе запоминающего устройства, необходимо упомянуть три наиболее распространенных технологии ЗУ – это полупроводниковая память, память с магнитным носителем информации, используемая в магнитных дисках и лентах, и память с оптическим носителем – оптические диски.
В зависимости от примененной технологии следует учитывать и ряд физических особенностей ЗУ, например энергозависимость. В энергозависимой памяти информация может быть искажена или потеряна при отключении источника питания. В энергонезависимых ЗУ записанная информация сохраняется и при отключении питающего напряжения. Магнитная и оптическая память – энергонезависимы. Полупроводниковая память может быть как энергозависимой, так и нет, в зависимости от ее типа. Помимо энергозависимости нужно учитывать, приводит ли считывание информации к ее разрушению.
Стоимость ЗУ принято оценивать отношением общей стоимости ЗУ к его емкости в битах, то есть стоимостью хранения одного бита информации.
Дата добавления: 2015-07-18; просмотров: 1354;