Аминокислоты как косметические средства
Шампуни и крема с добавками аминокислот более эффективно поддерживают нормальные функции кожи, благотворно сказываются на качестве волос.
Применение аминокислот постоянно расширяется и лимитируется только необходимой степенью очистки и высокой стоимостью производства.
В последние годы внимание многих исследователей обращено к регуляторным пептидам в связи с открывшимися возможностями медицинского их применения в качестве лекарственных препаратов, имитирующих действие эндогенных регуляторов организма.
Белки
Белкииграют наиважнейшую роль в процессах жизнедеятельности. Они являются результатом экспрессии генов и инструментом, при помощи которого геном управляет всеми метаболическими реакциями в клетке. Белки принимают участие в построении клеток и тканей, осуществляют биологический катализ, регуляторные и сократительные процессы, защиту от внешних воздействий.
Аминокислоты, соединяясь друг с другом посредством пептидных связей, образуют полипептиды. Белками называют полипептиды, содержащие более 50 аминокислотных остатков. В природе небольшие полипептиды синтезируются с помощью соответствующих ферментов, основная же масса белков образуется посредством матричного синтеза.
Осуществление белкового синтеза химическим путем основано на методе твердофазного синтеза. Таким же способом был получен гормон инсулин. Однако несмотря на разработку автоматических синтезаторов, метод химического синтеза белков не получил широкого распространения из-за наличия большого числа технических ограничений.
В последние годы белки растительного происхождения все в большей степени используют для питания не только животных, но и человека. Прямое потребление человеком растительных белков касается в первую очередь зерновых культур, бобовых, а также различных овощей. Выделение высокоочищенных белков (изолятов) происходит в несколько стадий. На первой стадии белки избирательно переводятся в растворимое состояние. Эффективность разделения твердой (примеси) и жидкой (белки) фаз является залогом получения в дальнейшем высокоочищенного продукта. Белковый экстракт содержит много сопутствующих растворимых продуктов, поэтому на второй стадии белки отделяют осаждением или применяют мембранную технологию, а также другие приемы (электролиз, ионообменные смолы, молекулярные сита и др.). Когда оптимальные условия растворимости белков определены, выбор конкретного технологического процесса зависит от вида сырья и целевого продукта.
Производство белковых продуктов методом микробиологического синтеза имеет многовековую историю. Микробные белки привлекают внимание биотехнологов в качестве пищевых продуктов в связи с дешевизной и быстротой их получения по сравнению с животными и растительными белками. Промышленное получение белка из микробных клеток осуществляется методом глубинного, непрерывного культивирования. Существенным недостатком этой технологии является наличие в конечном продукте примесей микробных клеток, количество и токсичность которых должно строго учитываться. Наличие нежелательных примесей при производстве микробного белка привело к тому, что он в основном используется в качестве корма для сельскохозяйственных животных. Белки и продукты их деградации применяются в медицине в качестве лекарственных веществ и лечебных пищевых добавок.
В клинической практике широко применяют белковые гидролизаты. При помощи кислотного или ферментативного гидролиза казеина получают белковые гидролизаты медицинского назначения. Так, препарат амиген применяют при кровопотерях. Препарат церебролизин, состоящий из смеси незаменимых аминокислот, назначают при нарушении мозгового кровообращения, умственной отсталости, потере памяти.
Липиды
Липиды – низкомолекулярные органические соединения, полностью или почти полностью нерастворимые в воде, могут быть извлечены из клеток животных, растений и микроорганизмов неполярными органическими растворителями, такими как хлороформ, эфир, бензол. В их состав входят спирты, жирные кислоты, азотистые основания, фосфорная кислота, углеводы и др.
Широкое применение нашли соли высших кислот – мыла, - моющее действие которых заключается в эмульгировании жиров и масел и суспендирования мельчайших твердых частичек грязи. Мыла используют также для стабилизации эмульсий, синтетических латексов, пен, в качестве присадок, структурирующих добавок и т.п.
Для анализа смесей жирных кислот наиболее пригоден метод газожидкостной хроматографии (ГЖХ). Этот метод характеризуется высокой разрешающей способностью и обладает достаточно высокой чувствительностью.
Воска – сложные эфиры жирных кислот и высших многоатомных или двухатомных спиртов. Природные воска – пчелиный воск и спермацет – нашли широкое применение в медицине, парфюмерной промышленности. Спермацет хорошо всасывается через кожные покровы и издавна используется в парфюмерии и медицине как основа для приготовления кремов и мазей. Пчелиный воск применяется в медицине для приготовления мазей, пластырей; входит в состав питательных, отбеливающих, очищающих кремов и масок. Он также находит применение в различных отраслях промышленности и благодаря таким свойствам, как кислотоустойчивость, водо- и электроизоляционность, устойчивость к действию света, нагреванию.
Под микробными липидами подразумеваются все растворимые в неполярных растворителях клеточные компоненты микроорганизмов. В настоящее время ведутся поиски новых источников получения жиров, в том числе и на технические нужды. Этим источником могут стать микроорганизмы, липиды которых после соответствующей обработки пригодны для использования в различных отраслях промышленности: медицинской, химико-фармакоцевтической, лакокрасочной, шинной и других, что позволит высвободить значительные количества масел животного и растительного происхождения.
Технологический процесс получения микробных липидов, в отличие от получения белковых веществ, обязательно включает стадию выделения липидов из клеточной массы методом экстракции в неполярном растворителе (бензине или эфире). При этом получают одновременно два готовых продукта: микробный жир (биожир) и обезжиренный белковый препарат (биошрот).
Сырьем для этого процесса являются те же среды, что и для производства кормовой биомассы. В процессе культивирования микроорганизмов на различных средах получаются три класса липидов: простые, сложные липиды и их производные.
Простые липиды - нейтральные жиры и воски. Нейтральные жиры (основные запасные компоненты клетки) - эфиры глицерина и жирных кислот, основная масса которых триацилглицериды (есть, впрочем ещё и моно- и диглицериды). Воски - эфиры жирных кислот или моноооксикислот и алифатических спиртов с длинной углеродной цепью. По структуре и свойствам близки к нейтральным липидам. Наибольшее количество нейтральных липидов синтезируют дрожжи и мицелиальные грибы. Простые липиды находят применение как технологические смазки в процессах холодной и тепловой обработки металлов. Продуцентами сложных липидов являются в основном бактерии.
Сложные липиды делятся на две группы: фосфолипиды и гликолипиды. Фосфолипиды (фосфоглицериды и сфинголипиды) входят в состав различных клеточных мембран и принимают участие в переносе электронов. Их молекулы полярны и при рН 7,0 фосфатная группа несет отрицательный заряд. Концентрат фосфолипидов находит применение в качестве антикоррозийной присадки к маслам и как добавка при флотации различных минералов. Гликолипиды в отличие от фосфолипидов не содержат молекулы фосфорной кислоты, но также являются сильнополярными соединениями за счет наличия в молекуле гидрофильных углеводных групп (остатков глюкозы, маннозы, галактозы и др.).
К производным липидов относят жирные кислоты, спирты, углеводороды, витамины Д, Е и К. Жирные кислоты представлены насыщенными и ненасыщенными с одной двойной связью кислотами нормального строения и четным числом углеродных атомов (пальмитиновая, стеариновая, олеиновая). Среди диеновых жирных кислот можно выделить линолевую. Двойные связи в ненасыщенных жирных кислотах микробных липидов часто располагаются так, что делят их на части, число углеродных атомов в которых кратно трем. Очищенные монокарбоновые кислоты с числом углеродных атомов 14-18 находят широкое применение в мыловаренной, шинной, химической, лакокрасочной и других отраслях промышленности.
Спирты, присутствующие в липидах, делятся на три группы: спирты с прямой цепью, спирты с β-ионовым кольцом, включающие витамин А и каротиноиды, а также стерины - компоненты неомыляемой части липидов (например, эргостерин, облучение которого ультрафиолетовым светом позволяет получать витамин Д2).
Для промышленного использования важное значение имеет способность усиленно накапливать липиды. Этой способностью обладают немногие микроорганизмы, в первую очередь дрожжи. Процесс образования липидов у большинства дрожжей состоит из двух четко разграниченных стадий:
- первая характеризуется быстрым образованием белка в условиях усиленного снабжения культуры азотом и сопровождается медленным накоплением липидов (в основном глицерофосфатов и нейтральных жиров);
- вторая - прекращением роста дрожжей и усиленным накоплением липидов (в основном нейтральных).
Типичными липидообразователями являются дрожжи Cryptococcus terricolus. Они могут синтезировать большое количество липидов (до 60% от сухой массы) в любых условиях, даже наиболее благоприятных для синтеза белка.
Из других липидообразующих дрожжей промышленный интерес представляют дрожжи С.guilliermondii,утилизирующие алканы. Они синтезируют в основном фосфолипиды. Накапливают большие количества липидов и активно развиваются на углеводных субстратах (на мелассе, гидролизатах торфа и древесины) также дрожжи видов Lipomyces lipoferus и Rhodotorula gracilis. У этих видов дрожжей липогенез сильно зависит от условий культивирования. Эти продуценты накапливают значительные количества (до 70%) триацилглицеридов.
Микроскопические грибы пока не получили большого распространения в получении липидов, хотя жир грибов по своему составу близок к растительному. Выход жиров у Asp.terreus, например, на углеводных средах достигает 51% от абсолютно сухого веса (АСВ). Липидный состав грибов представлен в основном нейтральными жирами и фосфолипидами.
Липиды, синтезируемые бактериями, своеобразны по своему составу, так как включают в основном сложные липиды, тогда как нейтральные жиры составляют незначительную часть биомассы. При этом бактерии производят разнообразные жирные кислоты (содержащие от 10 до 20 атомов углерода), что важно для промышленного получения специфических жирных кислот. Водоросли перспективны для культивирования в качестве липидообразователей, так как не нуждаются в органическом источнике углерода. Химический состав (соотношение белков и жиров) водорослей также сильно варьирует в зависимости от содержания в среде азота. Недостатки - малая скорость роста и накопление токсических соединений в клетках, - ограничивают промышленное применение.
Итак, основную роль в процессе биосинтеза липидов играют различные штаммы дрожжей. Они используют те же источники сырья, что и для получения кормового белка, причем от ценности углеродного питания зависят выход биомассы, количество и состав синтезируемых липидов. Для обеспечения направленного биосинтеза липидов в питательной среде употребляются легкоассимилируемые источники азота.
На сдвиг биосинтеза в сторону образования липидов или белка влияет соотношение углерода и азота в среде. Так, повышение концентрации азота вызывает снижение липидообразования, а недостаток азота при обеспеченности углеродом ведет к понижению выхода белковых веществ и высокому процентному содержанию жира. Установлено, что оптимальное соотношение N:С тем меньше, чем труднодоступнее для дрожжей источник углерода. Обычно для углеводородного сырья соотношение N:C = 1:30, а для углеводного - 1:40. Накопление липидов возможно только при наличии в среде фосфора. При его недостатке источники углерода используются не полностью, при избытке - накапливаются нелипидные продукты. На фракционный состав липидов изменение содержания фосфора влияния не оказывает.
Воздействие остальных элементов среды (микро- и макроэлементов) сказывается на интенсивности роста дрожжей и скорости утилизации источника углерода, что влияет и на количество накопленных липидов, но не на их качество.
На фракционный состав синтезируемых липидов оказывают другие условия культивирования: аэрация, рН и температура. От интенсивности аэрации зависит синтез фосфоглицеридов, жирных кислот и триацилглицеридов. При недостаточной аэрации липиды содержат в 4 раза меньше триацилглицеридов, в 2 раза больше фосфоглицеридов и в 8 раз больше жирных кислот, чем при нормальной. При интенсификации аэрации возрастает степень ненасыщенности липидов и увеличивается относительное количество всех групп ненасыщенных кислот. Повышение рН среды ведет к увеличению содержания фосфоглицеридов и жирных кислот при одновременном снижении количества триацилглицеридов. Оптимальные температуры роста и липидообразования для клеток совпадают, причем содержание липидов не зависит от температуры культивирования. Однако, регулируя температуру, можно создавать разные соотношения насыщенных и ненасыщенных жирных кислот в составе фосфолипидных мембран.
Для углеводных субстратов наиболее отработана технология получения липидов на гидролизатах торфа и древесины. Как показали исследования, соотношение гидролизатов торфа и древесины 1:4 обеспечивает наибольший выход биомассы в стадии культивирования (до 10 г/л) при максимальном содержании липидов (до 51% от АСВ) и высоком коэффициенте усвоения субстрата (до 0,54). Из 1 тонны абсолютно сухого торфа после его гидролиза и ферментации можно получить 50-70 кг микробного жира с преимущественным содержанием триацилглицеридов.
Дата добавления: 2015-07-14; просмотров: 2073;