Глюконеогенез
Глюконеогенез – синтез глюкозы из неуглеводных продуктов. Организм может синтезировать глюкозу соединений, способных предварительно превратиться в пируват, т.е. из большинства аминокислот и лактата, поступающих в кровь из работающих мышц. Глюкоза не может быть синтезирована из ацетил-КоА и жирных кислот.
Наиболее интенсивно глюконеогенез протекает в клетках печени и почек (в корковом веществе). Глюконеогенез позволяет сохранить энергию превращений в виде гликогена, а также способствует поддержанию уровня глюкозы в крови в пределах нормы при голодании (что особенно важно для нормальной работы мозга), в период интенсивной физической работы.
Большинство стадий глюконеогенеза представляет собой обращение реакции гликолиза. Только три реакции гликолиза (гексокиназная, фосфофруктокиназная и пируваткиназная) необратимы, поэтому в процесс глюконеогенеза на 3-х этапах используются другие ферменты (рис.37).
Рис. 37. Гликолиз и глюконеогенез
Образование фосфоенолпирувата из пирувата. Синтез фосфоенолпирувата осуществляется в несколько этапов. Сначала пируват под влиянием пируваткарбоксилазы и при участии СО2 и АТФ карбоксилируется с образованием оксалоацетата:
Затем оксалоацетат в результате декарбоксилирования и фосфорилирования под влиянием фермента фосфоенолпируваткарбоксилазы превращается в фосфоенолпируват. Донором фосфатного остатка в реакции служит гуанозинтрифосфат (ГТФ):
Первый этап синтеза протекает в митохондриях. Пируваткарбоксилаза, катализирующая эту реакцию, является аллостерическим митохондриальным ферментом. В качестве аллостерического активатора данного фермента необходим ацетил-КоА. Мембрана митохондрий непроницаема для образовавшегося оксалоацетата. Последний здесь же, в митохондриях, восстанавливается в малат:
Реакция протекает при участии митохондриальной НАД-зависимой малатдегидрогеназы. Оксалоацетат восстанавливается в малат, который легко выходит из митохондрий через митохондриальную мембрану. В цитозоле отношение НАДН/НАД+ очень мало, и малат вновь окисляется при участии цитоплазматической НАД-зависимой малатдегидрогеназы:
Дальнейшее превращение оксалоацетата в фосфоенолпируват происходит в цитозоле клетки.
Превращение фруктозо-1,6-бифосфата в фруктозо-6-фосфат. Фосфоенолпируват, образовавшийся из пирувата, в результате ряда обратимых реакций гликолиза превращается во фруктозо-1,6-бифосфат. Далее следует фосфофруктокиназная реакция, которая необратима. Глюконеогенез идет в обход этой реакции. Превращение фруктозо-1,6-бифосфата во фруктозо-6-фосфат катализируется специфической фосфатазой:
Фруктозо-1,6-бифосфат + НО2 ® Фруктозо-6-фосфат + Рi
Образование глюкозы из глюкозо-6-фосфата. В последующей обратимой стадии биосинтеза глюкозы фруктозо-6фосфат превращается в глюкозо-6-фосфат. Последний может дефосфорилироваться (т.е. реакция идет в обход гексокиназной реакции) под влиянием фермента глюкозо-6-фосфатазы:
Глюкозо-1,6-фосфат + НО2 ® Глюкоза + Рi
Регуляция глюконеогенеза. Важным моментом в регуляции глюконеогенеза является пируваткарбоксилазная реакция. В отсутствии ацетил-КоА, выполняющего функцию аллостерического активатора пируваткарбоксилазы, фермент почти полностью лишен активности. Когда в клетке накапливается митохондриальный ацетил-КоА, биосинтез глюкозы из пирувата усиливается. Одновременно ацетил-КоА является ингибитором пируватдегидрогеназного комплекса. Следовательно, накопление ацетил-КоА замедляет окислительное декарбоксилирование пирувата, что также способствует превращению последнего в глюкозу.
Другой важный момент в регуляции глюконеогенеза – реакция, катализируемая фруктозо-1,6-бифосфотазой – ферментом, который ингибируется АМФ. Противоположное действие АМФ оказывает на фосфофруктокиназу, т.е. для этого фермента он является аллостерическим активатором. При низкой концентрации АМФ и высоком уровне АТФ происходит стимуляция глюконеогенеза. Напротив, когда величина отношения АТФ/АМФ мала, в клетке наблюдается расщепление глюкозы.
Мощным регулятором активности фосфофруктокиназы и фруктозо-1,6-бифосфатазы является фруктозо-2,6-бифосфат. Фруктозо-2,6-бифосфат активирует фосфофруктокиназы и ингибирует фруктозо-1,6-бифосфатазу. Повышение в клетке уровня фруктозо-2,6-бифосфата способствует усилению гликолиза и уменьшению скорости глюконеогенеза. При снижении концентрации фруктозо-2,6-бифосфата отмечается обратная картина.
Дата добавления: 2015-07-06; просмотров: 3604;