ВЛИЯНИЕ РАСХОДА БУРОВОГО РАСТВОРА 1 страница
Непрерывная циркуляция бурового раствора при бурении должна обеспечивать чистоту ствола скважины и забоя, охлаждение долота, способствовать эффективному разрушению породы, предупреждать осложнения. Влияние расхода раствора на механическую скорость бурения показано на рис. 4. Как видно из рисунка, при неизменной осевой нагрузке и частоте вращения долота с увеличением секундного расхода бурового раствора улучшается очистка забоя и возрастает механическая скорость проходки. Однако увеличение секундного раствора эффективно лишь пока он не достигнет некоторой величины Qд , при Qмах механическая скорость проходки стабилизируется. Величина Qд зависит от конструкции долота, схемы очистки забоя, удельной осевой нагрузки, частоты вращения, твёрдости породы и свойств бурового раствора.
При дальнейшем возрастании расхода начнёт преобладать повышение потерь напора на преодоление гидравлических сопротивлений в кольцевом пространстве, общее давление на забой начнёт расти и механическая скорость будет снижаться.
5.1.4. ВЛИЯНИЕ СВОЙСТВ БУРОВОГО РАСТВОРА.
, облегчающего разрушение пород.
Чем выше проницаемость пород и больше водоотдача (фильтрация), меньше вязкость фильтрата, ниже частота вращения, больше продолжительность контакта, тем слабее влияние плотности раствора, поскольку давление на забое и на глубине выкола успевает выровняться.
Рис. 4. Влияние расхода бурового раствора на Vм
На механическую скорость бурения влияют плотность, вязкость, фильтрация ,содержание песка и ряд других параметров бурового раствора. Наиболее существенно оказывает влияние плотность бурового раствора (рис. 5 ). Это влияние объясняется в основном повышением гидростатического давления на забой и ростом перепада давления между скважиной и разбуриваемым пластом, в результате чего ухудшаются условия образования трещин, выкалываемые частицы прижимаются к массиву. Поэтому наиболее значительно влияние r в области объёмного разрушения породы, а при бурении в области поверхностного разрушения и истирания оно незначительно.
С понижением плотности в большей мере проявляется эффект неравномерного всестороннего сжатия
Рис. 5. Влияние плотности бурового раствора на Vм
5.2. ОСОБЕННОСТИ РЕЖИМОВ ВРАЩАТЕЛЬНОГО БУРЕНИЯ.
Увеличение осевой нагрузки и частоты вращения, повышение плотности, вязкости и концентрации твёрдых частиц, снижение расхода ниже Qд, а также теплоёмкости, теплопроводности и смазывающих свойств буровых растворов, неравномерная (рывками) подача долота, продольные и поперечные колебания низа бурильной колонны, высокая температура на забое – всё это сокращает производительное время пребывания долота на забое. Однако конечная цель – не увеличение продолжительности пребывания долота на забое, а получение большей проходки на долото за возможно более короткое время. Поэтому если изменение какого – то параметра обуславливает сокращение продолжительности работы долота на забое, но одновременно увеличивается механическая скорость и повышается проходка на долото, то оно целесообразно.
Так как параметры режима бурения взаимосвязаны, то наибольшая эффективность бурения достигается лишь при оптимальном сочетании этих параметров, зависящем от физико – механических свойств породы, конструкции долота, глубины залегания разбуриваемой породы и других факторов. Увеличение одного из параметров режима, например, осевой нагрузки, способствует повышению эффективности бурения лишь до тех пор, пока он не достигнет оптимального значения при данном сочетании других параметров. Увеличение рассматриваемого параметра выше этого оптимального значения может способствовать дальнейшему повышению эффективности бурения только в том случае, если одновременно будут изменены все или некоторые другие параметры (например, увеличен расход промывочной жидкости, уменьшена частота вращения).
Измененному сочетанию других параметров режима соответствует новое оптимальное значение рассматриваемого. Изменение параметров режима возможно лишь в определённых пределах, которые зависят от прочности долота, особенностей способа бурения, технических параметров буровой установки и ряда других факторов.
Регулировать раствор бурового раствора можно тремя способами: заменой втулок одного диаметра в цилиндрах бурового насоса на втулки другого диаметра, изменением числа одновременно параллельно работающих буровых насосов, изменением числа двойных ходов поршней в насосе. При первых двух способах расход раствора можно изменять только ступенчато, при третьем возможно также плавное изменение. Второй из названных выше способов применяют, как правило, в случае изменения диаметра долота: при бурении верхнего участка скважины долотами большого диаметра используют два одновременно работающих насоса. При переходе к бурению следующего участка долотами меньшего диаметра один из насосов часто отключают. Менять втулки можно только в неработающем насосе. Поэтому в большинстве случаев расход жидкости в период работы долота на забое остаётся практически неизменным. Если продолжительность рейса велика (несколько десятков часов), расход к концу рейса может несколько уменьшиться вследствие возрастания утечек в насосе, обусловленного износом поршней.
Гидравлическую мощность на забое можно регулировать изменением либо расхода бурового раствора, либо диаметра гидромониторных насадок в долоте, либо числа таких насадок. Очевидно, диаметр насадок можно изменить только при подготовке нового долота к спуску в скважину. Число же работающих насадок можно уменьшить так же в период работы долота на забое, если в поток жидкости в бурильных трубах сбросить шар соответствующего диаметра, он перекроет входное отверстие в одной из насадок и выключит её из работы. При этом скорости струй и перепад давлений в оставшихся работающих насадках возрастут, и соответственно увеличится гидравлическая мощность на забое. Такой способ регулирования гидравлической мощности на забое можно использовать тогда, когда рабочее давление в насосах меньше предельно допустимого при данном диаметре втулок в них.
Тема 6. БУРОВЫЕ ПРОМЫВОЧНЫЕ ЖИДКОСТИ
При бурении вращательным способом в скважине постоянно циркулирует поток жидкости, которая ранее рассматривалась только как средство для удаления продуктов разрушения (шлама). В настоящее время она воспринимается, как один из главных факторов обеспечивающих эффективность всего процесса бурения.
При проведении буровых работ циркулирующую в скважине жидкость принято называть - буровым раствором или промывочной жидкостью (Drilling mud, drilling fluid).
Буровой раствор кроме удаления шлама должен выполнять другие, в равной степени важные функции, направленные на эффективное, экономичное, и безопасное выполнение и завершение процесса бурения. По этой причине, состав буровых растворов и оценка его свойств становился темой большого объема научно-практических исследований и анализа.
В настоящее время в мировой практике наблюдается тенденция роста глубин бурения скважин, а как следствие, и увеличение опасности возникновения при этом различных осложнений. Кроме того, постоянно ужесточаются требования более полной и эффективной эксплуатации продуктивных пород. В этой связи буровой раствор должен иметь состав и свойства, которые обеспечивали бы возможность борьбы с большинством из возможных осложнений и не оказывали негативного воздействия на коллекторские свойства продуктивных горизонтов.
6.1. Условия бурения с применением промывочных жидкостей
В процессе бурения нарушается равновесие пород, слагающих стенки скважин. Устойчивость стенок зависит от исходных прочностных характеристик горных пород, их изменения во времени под действием различных факторов. Большая роль здесь принадлежит процессу промывки и промывочному агенту. Основная задача промывки - обеспечение эффективного процесса бурения скважин - включает в себя сохранение как устойчивости стенок скважин, так и керна.
В условиях, когда нарушена целостность породы, большую роль играет горное давление. В приствольной части скважины оно проявляется как в вертикальном, так и в горизонтальном направлении. Боковое давление является следствием вертикального и вызывает касательные напряжения, способствующие выпучиванию пород, сужению ствола и обвалообразованию. Величина касательных напряжений зависит не только от горного давления, но и от давления промывочной жидкости.
В бурении горное давление всегда превышает гидростатическое столба промывочной жидкости в скважине и способствует разрушению стенок скважины, если прочность самой породы недостаточна или значительно ослаблена в результате воздействия промывочной жидкости. Наиболее интенсивна деформация породы непосредственно у стенок скважины, где боковое давление не уравновешивается гидростатическим и силами сцепления горной породы. Характер изменения сил сцепления в породе обусловлен геолого-минералогическими особенностями горной породы и ее взаимодействием с промывочной жидкостью, главным образом физико-химическим.
Физико-химическое воздействие жидкости на горную породу проявляется в трех основных формах:
1) активное воздействие, основанное на процессах гидратации, диссоциации, ионообмена и химических превращений;
2) адсорбционное воздействие;
3) осмотическое воздействие.
Основное отрицательное влияние промывочной жидкости на прочность горных пород сводится к физико-химическим изменениям в структуре пород под действием фильтрата. Действие фильтрата сопровождается диспергацией глинистой составляющей породы, набуханием, капиллярным и динамическим расклиниванием. На контакте промывочной жидкости со стенками скважины происходит химическое растворение, выщелачивание, гидромеханическое разрушение породы. Процесс усиливается механическим воздействием бурильной колонны на стенки скважин.
Характер и скорость ослабления связей между частицами горных пород при бурении с промывкой во многом зависят от наличия естественных нарушений сплошности породы (пористости, трещиноватости). С одной стороны, они сами являются источником уменьшения механической прочности породы и способствуют ее смачиванию. В местах нарушения движется фильтрат и возникают капиллярные силы. С другой стороны, наличие нарушений является условием образования фильтрационной корки из частиц твердой фазы промывочного агента, способствующей повышению устойчивости породы.
Важный фактор устойчивости горной породы - ее естественная влажность. Даже при незначительном увлажнении пород глубина их устойчивого залегания резко уменьшается. При полном водонасыщении прочность, например плотных глин и глинистых сланцев, снижается в 2 - 10 раз. Большое значение для устойчивости стенок скважин имеет и физико-химический состав жидкостей, насыщающих породу.
Пластовая жидкость оказывает химическое воздействие на горную породу, усиливающееся при вскрытии пласта, она же является предпосылкой диффузии и осмоса. Если в скважине промывочная жидкость будет более минерализованной, чем пластовая вода, то процесс осмоса не повлияет на целостность породы, так как не произойдет обновления среды и увеличения количества жидкости в порах породы.
Скорость отделения частиц породы в процессе разрушения стенок скважин зависит от величины давления столба промывочной жидкости, а также гидромеханического воздействия жидкости в процессе циркуляции. Однако существенное положительное воздействие давления столба промывочной жидкости на обваливающиеся породы будет только при предельно ограниченном поступлении фильтрата в пласт" или ее физико-химическом упрочняющем действии на породу. В пластичных (ползучих). породах рост противодавления промывочной жидкости существенно затрудняет развитие сужений ствола в основном вследствие физикохимического взаимодействия промывочной жидкости с породами, слагающими стенки скважин.
Выделяются следующие виды нарушений целостности стенок скважин в результате взаимодействия промывочной жидкости с горными породами: обвалы (осыпи); набухание; пластичное течение (ползучесть); химическое растворение; размыв.
Устойчивость горных пород во многом связана с обеспечением непрерывной циркуляции промывочной жидкости в процессе бурения при наличии в геологическом разрезе проницаемых горных пород. Чаще всего в практике разведочного колонкового бурения такие проницаемые зоны представлены водоносными пластами. В зависимости от пластового давления и применяемого промывочного агента могут происходить поглощение промывочной жидкости, водопроявление, неустойчивая циркуляция. Поглощение промывочной жидкости удорожает, а подчас делает невозможным бурение скважины. Водопроявление ухудшает качество промывочной жидкости в процессе циркуляции, приводит к дополнительному экологическому загрязнению. Неустойчивая циркуляция осложняет технологию бурения, поддержание качества жидкости, ее регулирование.
Поглощения делятся на частичные и полные. Проницаемые зоны классифицируются по величине коэффициента, характеризующего проницаемость зоны в процессе бурения. Проницаемые зоны, представленные неустойчивыми, тонкотрещиноватыми или пористыми породами, изолируются частицами твёрдой фазы промывочной жидкости в процессе бурения скважин. Потеря промывочного агента здесь сводится к объему, отфильтровавшемуся в процессе формирования корки.
Таблица 6.1
Классификация пород по степени устойчивости.
Группа пород | Степень устойчивости | Характеристика основных свойств пород, определяющих их устойчивость | Типичные породы | Вид нарушения целостности стенок скважин |
I | Весьма неустойчивые | Отсутствие связи между частицами породы | Крупнозернистые и среднезернистые пески, отмытые гравий, галечник, щебень | Обвалы, размыв |
II | Неустойчивые | Слабая связь между частицами (главным образом за счет вещества - заполнителя пор) | Илы, лесс, супеси, пески, гравий, галечник, щебень с глинисто-песчаным заполнителем пор. Сильно выветрелые (до дресвы) скальные породы | Обвалы, размыв, слабое набухание |
III | С изменяющейся устойчивостью | Сложная связь между частицами, преимущественно коллоидная или образованная льдом, исчезающая при насыщении водой или нагревании | Суглинки, глины, песчано-глинистые грунты, рыхлые, нацело каолинизированные продукты выветривания скальных пород. Все породы, как талые, так и многолетнемерзлые | Обвалы, набухание, пластическое течение, размыв |
IV | Слабоустойчивые | Недостаточно прочная связь между частицами, обусловленная главным образом цементирующим веществом | Сланцы глинистые, слабосцементированные песчаники; угли, слабые мергели, гипс, галиты, слабосцементированные брекчии и конгломераты. Выветрелые скальные породы. Перемятые зоны тектонических нарушений | Обвалы, (осыпи), слабое набухание, пластическое течение, размыв |
V | Относительно устойчивые | Достаточно прочная связь между частицами, постепенно уменьшающаяся при смачивании и механическом воздействии бурильных труб | Сланцы песчано-глинистые, хлоритовые, серицитовые; аргиллиты; слоистые породы с перемежающейся твердостью, крутопадающие; скальные трещиноватые породы | Обвалы (осыпи), размыв |
VI | Устойчивые | Жесткая, преимущественно кристаллизационная связь между зернами, разрушенная местами трещинами | Трещиноватые, скальные и полускальные породы; изверженные, осадочные (крепкие известняки, сланцы, песчаники), метаморфические породы (кварциты, мраморы и т. д.) | Вывалы |
VII | Весьма устойчивые | Жесткая, преимущественно кристаллизационная связь между зернами | Монолитные скальные породы; изверженные, осадочные (известняки, песчаники), метаморфические породы (кварциты, окремнелые сланцы и т. д.) |
Однако если бурение скважины ведется на жидкое или газообразное полезное ископаемое, то ставится задача сохранения проницаемости пласта и роль промывочного агента усложняется.
Соотношение давлений столба промывочной жидкости и Пластового (порового) определяет величину дифференциального давления в скважине, которое играет важную роль не только в сохранении стенок скважины, но и в процессе разрушения породы на забое и прихватах бурового инструмента.
6.2. Способы промывки
При бурении скважин промывочная жидкость должна циркулировать по замкнутому гидравлическому контуру. В зависимости от вида гидравлического контура все существующие системы промывки делятся на две группы: 1) системы промывок с выходом раствора на поверхность; 2) системы промывок с внутрискважинной циркуляцией. В зависимости от направления движения промывочной жидкости по отношению к буровому инструменту промывка с выходом ее на поверхность осуществляется по одной из приведенных на рисунке схем.
Комбинированная система промывки по технологии исполнения подразделяется на периодическую (последовательную) и совмещенную (параллельную). Оба варианта могут быть реализованы как по прямой, так и по обратной схеме. При использовании периодической промывки направление потока бурового раствора меняется с прямой промывки на обратную и наоборот. Направление движения раствора, подаваемого к забою скважины, изменяется на поверхности при соответствующей обвязке насоса и устья скважины.
6.3. Функции бурового раствора
Удаление продуктов разрушения из скважины.
Вся выбуренная порода должна эффективно удаляться с забоя и из ствола во избежание переизмельчения шлама и дополнительного износа породоразрушающего инструмента и бурильных труб. Качество очистки забоя зависит от степени турбулизации жидкости в призабойной зоне. Чем она выше, тем лучше и быстрее очищается забой скважины от выбуренной породы. На характер течения жидкости в призабойной зоне скважины существенно влияет частота вращение бурового снаряда, а также конструкция и расположение промывочных окон в породоразрушающем инструменте.
Способность бурового раствора, удалять шлам из скважины в отстойник зависит частично от характеристик раствора и частично от скорости циркуляции в кольцевом пространстве между бурильной трубой и стенкой скважины. Когда мощности бурового насоса недостаточно для обеспечения необходимой скорости восходящего потока бурового раствора для эффективного удаления шлама, можно увеличить вязкость раствора, особенно, предел текучести. Однако это приводит к ухудшению условий очистки раствора и росту гидравлических сопротивлений в циркуляционной системе скважины.
Охлаждение породоразрушающего инструмента и бурильных труб
В процессе бурения происходит нагрев породоразрушающего инструмента за счет совершаемой на забое механической работы. Буровой раствор, омывая породоразрушающий инструмент, в результате конвекционного обмена отводит тепло. Эффективность охлаждения зависит от расхода бурового раствора, его теплофизических свойств и начальной температуры, а также от размеров и конструктивных особенностей породоразрушающего инструмента.
Буровой раствор также охлаждает бурильные трубы, нагревающиеся вследствие трения о стенки скважины.
Буровые растворы обладают относительно высокой теплоемкостью, поэтому функция охлаждения выполняется даже при небольших их расходах.
Удержание частиц выбуренной породы во взвешенном состоянии
Удержание частиц выбуренной породы и утяжелителя во взвешенном состоянии в промывочной жидкости, находящейся в скважине необходимо для предотвращения прихватов бурильного инструмента при прекращении циркуляции. Для выполнения этой функции буровой раствор должен обладать тиксотропным свойствами, то есть способностью превращаться при отсутствии движения из золя в гель с образованием структуры, обладающей определенной устойчивостью. Устойчивость структуры оценивается величиной статического напряжения сдвига
Облегчение процесса разрушения горных пород на забое
Активное воздействие бурового раствора на забой обусловлено, главным образом, за счет кинетической энергии потока на выходе из бурового снаряда.
Эффект гидродинамического воздействия усиливается путем подбора площади сечения и мест расположения каналов, через которые жидкость выходит на забой скважины. Эта функция промывочной жидкости наиболее эффективна в породах рыхлого комплекса.
Кроме того, облегчение процесса разрушения горных пород на забое может быть осуществлено за счет понижения их твердости. Сущность процесса понижения твердости горных пород заключается в следующем, горные породы не однородны по прочности, имеют более слабые места в кристаллической решетке, а также микротрещины, пронизывающие кристаллы и расположенные по их границам.
Жидкость как внешняя среда активно участвует в процессе механического разрушения горных пород, проникая в глубину деформируемого тела - в зону предразрушения, представляющую собой деформированные слои с повышенной трещиноватостью. Активность жидкости может быть значительно повышена небольшими добавками к ней специальных веществ, получивших название понизителей твердости. Воздействие этих веществ на процесс разрушения горных пород основано на усилении физико-химического взаимодействия дисперсионной среды с развивающимися в процессе механического разрушения новыми поверхностями горной породы. Дисперсионная среда бурового раствора с добавленными понизителями твердости, проникая в зону предразрушения и распределяясь по микротрещинам, образует на поверхностях горных пород адсорбционные пленки (сольватные слои). Эти пленки производят расклинивающее действие в зонах, расположенных вблизи поверхности обнажаемых горных пород, вследствие чего создаются лучшие условия их разрушения. Чем сильнее при этом связь смачивающей жидкости с поверхностью тела, тем сильнее расклинивающее действие адсорбционно-сольватных слоев.
Наблюдения показали, что при бурении с добавкой в буровой раствор понизителей твердости зоны предразрушения горных пород становятся более развитыми, зародышевые щели распространяются значительно глубже и количество их увеличивается по сравнению с воздействием жидкости малоактивной, без адсорбирующихся добавок.
Поверхностно-активные вещества, адсорбируясь на обнажаемых поверхностях микротрещин, способствуют снижению свободной поверхностной энергии тела, что уменьшает величину необходимой для разрушения работы и облегчает разбуривание горной породы. Эффективность действия понизителей твердости зависит от механических условий разрушения (прежде всего периодичности силовых воздействий), химической природы самих реагентов, их концентрации в буровом растворе и физико-химических свойств горных пород.
На поверхностях твердого тела в качестве понизителей твердости могут адсорбироваться как поверхностно-активные молекулы органических веществ (не электролитов), так и ионы электролитов.
В качестве основных понизителей твердости пород используются хлористый натрий, хлористый магний, хлористый алюминий, кальцинированная сода, едкий натр, известь негашеная и гашеная и различные мыла.
Понизители твердости пород помогают процессу дальнейшего диспергирования находящегося в круговой циркуляции бурового шлама. Это имеет особенно важное значение при бурении с промывкой забоя естественными промывочными растворами, дисперсная фаза которых образуется из частичек твердых пород, диспергированных механическим воздействием долота на забой. Применяемые для стабилизации естественных карбонатных растворов поверхностно-активные вещества проникают в трещины довольно больших частичек шлама, откалываемых от забоя ударами зубьев долота. Адсорбируясь на вновь образованных поверхностях, оказывая расклинивающее действие и понижая поверхностное натяжение, эти вещества способствуют дальнейшему диспергированию шлама до частичек коллоидного размера, остающихся в системе в качестве дисперсной фазы раствора.
Сохранение устойчивости стенок скважины
Сохранение устойчивости стенок скважины – непременное условие нормального процесса бурения. Причина обрушения стенок – действие горного давления. Смачивание горных пород рыхлого комплекса в процессе бурения с промывкой резко уменьшает прочность стенок скважины и, следовательно, их устойчивость. Чем дальше распространяется зона смачивания, тем интенсивнее идет процесс разрушения стенок. Этот процесс усиливается вследствие размывающего действия промывочной жидкости, наличия в ней веществ, способствующих разрушению горных пород.
Нежелательное изменение свойств пород устраняется подбором рецептуры промывочной жидкости. В частности, в нее вводят компоненты, придающие ей крепящие свойства. Кроме того, ряд промывочных жидкостей содержит твердую фазу, которая, отлагаясь при фильтрации в порах и тонких трещинах, образует малопроницаемую для жидкой фазы корку. Такая корка, обладая определенной механической прочностью, связывает слабосцементированные частицы горных пород, замедляет или полностью останавливает процесс дальнейшего распространения смоченной зоны вокруг ствола скважины.
Сохранению устойчивости стенок скважины способствует гидростатическое давление промывочной жидкости. Однако с его ростом увеличивается интенсивность проникновения промывочной жидкости в горные породы, падает механическая скорость бурения. В этих условиях еще более повышается изолирующая и закрепляющая роль фильтрационной корки.
Большее значение гидростатическое давление промывочной жидкости приобретает при бурении трещиноватых пород, а также пород и минералов, обладающих свойством медленно выдавливаться в скважину под действием горного давления (например, соли: галит, карналлит и др.). Создание достаточно высокого гидростатического давления позволит сохранить устойчивость стенок скважины в таких условиях.
Создание гидростатического равновесия в системе "ствол скважины - пласт"
В процессе бурения скважина и вскрытый пласт образуют систему пласт – скважина. Промывочная жидкость давит на стенки скважины. Жидкости или газ, находящиеся в пласте, также давят на стенки скважины, но со стороны пласта. Поскольку жидкости соприкасаются друг с другом через каналы фильтрации, пронизывающие стенки скважины, пласт и скважина представляют собой сообщающиеся сосуды.
Если в процессе бурения давление в скважине больше пластового, будет наблюдаться уход промывочной жидкости в пласт – поглощение. Это приводит к возникновению различного рода осложнениям в процессе бурения:
– снижается уровень жидкости в скважине, что может вызвать обвалы стенок,
– теряется дорогостоящая промывочная жидкость;
– осложняется контроль за процессом промывки;
– загрязняются подземные воды.
Если пластовое давление больше гидростатического давления промывочной жидкости, возникает водопроявление – жидкость из скважины поступает на поверхность. Это также приводит к нежелательным последствиям: загрязняется прилегающая к скважине территория, резко ухудшается качество промывочной жидкости, что вызывает обрушение (или пучение) стенок скважин.
В процессе бурения давление жидкости в скважине изменяется: к гидростатическому добавляется давление, величина которого зависит от выполняемых в скважине технологических операций. Поэтому возможны условия, когда при бурении поглощение периодически перемежается с водопроявлением, что также отрицательно сказывается на функциях промывочной жидкости.
Обеспечение равенства давлений в системе пласт – скважина в процессе бурения позволит избежать нежелательных осложнений при вскрытии проницаемых горных пород.
Сохранение проницаемости продуктивных горизонтов
Эта функция промывочной жидкости важна при бурении скважин на жидкие и газообразные полезные ископаемые. В таких скважинах обязательно проводятся исследования по оценке запасов и возможных дебитов скважин. Часть скважин может впоследствии использоваться в качестве эксплуатационных.
Так как в процессе фильтрации промывочных жидкостей на поверхности горных пород и в устьевых частях пор и трещин откладывается корка из частиц твердой фазы, продуктивность пласта в прискважинной зоне уменьшается. Это приводит к снижению дебита скважин, искажению подсчетов запасов, неправильной оценке проницаемости горных пород. Причем уменьшение проницаемости прискважинной зоны может оказаться необратимым. Во избежание отрицательного воздействия жидкости на продуктивный пласт корка должна легко разрушаться, а твердые частицы вымываться из каналов фильтрации.
Кроме того, снижение проницаемости призабойной зоны продуктивного пласта возможно вследствие действия фильтрата бурового раствора на глинистый цемент пород коллекторов. Такие условия наиболее характерны для условий работы ЮКОС. Для предотвращения возможных осложнений необходимо использовать промывочную жидкость не отфильтровывающую дисперсионную среду в горные породы слагающие стенки скважины
Это достигается подбором вида твердой фазы промывочной жидкости и введением специальных компонентов.
Перенос энергии от насосов к забойным механизмам
Для эффективной работы забойных механизмов (турбобуров, гидроударников, винтовых двигателей) требуется определенная энергия, которая переносится от бурового насоса, установленного на поверхности, к забою скважины. Количество этой энергии определяется техническими характеристиками забойных механизмов и условиями бурения. Энергия, затрачиваемая на привод бурового насоса, расходуется, кроме того, на преодоление гидравлических сопротивлений при циркуляции промывочной жидкости в скважине.
Дата добавления: 2015-06-27; просмотров: 7274;