Монитор
Монитор — устройство визуального представления данных. Это не единственно возможное, но главное устройство вывода. Его основными потребительскими параметрами являются: размер экрана и шаг маски экрана, максимальная частота регенерации изображения (кадровой развертки), класс защиты.
Размер экрана измеряется между противоположными углами экрана кинескопа по диагонали. Единица измерения — дюймы. Стандартные размеры: 14"; 15"; 17"; 19"; 20"; 21". В настоящее время наиболее универсальными являются мониторы размером 15 и 17 дюймов, а для операций с графикой желательны мониторы размером 19-21 дюйм.
Изображение на экране монитора получается в результате облучения люминофорного покрытия остронаправленным пучком электронов, разогнанных в вакуумной колбе. Для получения цветного изображения люминофорное покрытие имеет точки или полоски трех типов, светящиеся красным, зеленым и синим цветом. Чтобы на экране все три луча сходились строго в одну точку и изображение было четким, перед люминофором ставят маску — панель с регулярно расположенными отверстиями или щелями. Часть мониторов оснащена маской из вертикальных проволочек, что усиливает яркость и насыщенность изображения. Чем меньше шаг между отверстиями или щелями (шаг маски), тем четче и точнее полученное изображение. Шаг маски измеряют в долях миллиметра. В настоящее время наиболее распространены мониторы с шагом маски 0,25-0,27 мм.
Частота регенерации (обновления) изображения показывает, сколько раз в течение секунды монитор может полностью сменить изображение (поэтому ее также называют частотой кадров). Этот параметр зависит не только от монитора, но и от свойств и настроек видеоадаптера (см. ниже), хотя предельные возможности определяет все-таки монитор. Частоту регенерации изображения измеряют в герцах (Гц). Чем она выше, тем четче и устойчивее изображение, тем меньше утомление глаз, тем больше времени можно работать с компьютером непрерывно. При частоте регенерации порядка 60 Гц мелкое мерцание изображения заметно невооруженным глазом. Сегодня такое значение считается недопустимым. Минимальным считают значение 75 Гц, нормативным — 85 Гц и комфортным — 100 Гц и более.
Класс защиты монитора определяется стандартом, которому соответствует монитор с точки зрения требований техники безопасности. В настоящее время общепризнанными считаются следующие международные стандарты: MPR-II, ТСО-92, ТСО-95, ТСО-99 (приведены в хронологическом порядке). Стандарт MPR-II ограничил уровни электромагнитного излучения пределами, безопасными для человека. В стандарте ТСО-92 эти нормы были сохранены, а в стандартах ТСО-95 и ТСО-99 ужесточены. Эргономические и экологические нормы впервые появились в стандарте ТСО-95, а стандарт ТСО-99 установил самые жесткие нормы по параметрам, определяющим качество изображения (яркость, контрастность, мерцание, антибликовые свойства покрытия).
Большинством параметров изображения, полученного на экране монитора, можно управлять программно. Программные средства, предназначенные для этой цели, обычно входят в системный комплект программного обеспечения — мы рассмотрим их при изучении операционной системы компьютера.
ВИДЫ МОНИТОРОВ
CRT
Сегодня самый распространенный тип мониторов — это CRT (Cathode Ray Tube) мониторы. В основе этих мониторов лежит электронно-лучевая трубка (ЭЛТ). С фронтальной стороны внутренняя часть стекла трубки покрыта люминофором (Luminofor). Люминофор — это вещество, которое испускает свет при бомбардировке его заряженными частицами. Для создания изображения в СИТтмониторе используется электронная пушка, которая испускает поток электронов сквозь металлическую маску или решетку на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точками. Поток электронов на пути к фронтальной части трубки проходит через модулятор интенсивности и ускоряющую систему. Светящиеся точки люминофора формируют изображение. Как правило, в цветном CRT-мониторе используются три электронные пушки, в отличие от одной пушки, применяемой в монохромных мониторах.
Глаза человека реагируют на основные цвета: красный (Red), зеленый (Green) и синий (Blue) — и на их комбинации, которые создают бесконечное число цветов. Каждая из трех пушек соответствует одному из основных цветов и посылает пучок электронов на различные частицы люминофора, чье свечение основными цветами с различной интенсивностью комбинируется и в результате формируется изображение с требуемым цветом. Электронный луч, предназначенный для красных люминофорных элементов, не должен влиять на люминофор зеленого или синего цвета. Чтобы добиться такого действия, используется специальная маска, обеспечивающая дискретность (растровость) изображения. ЭЛТ можно разбить на два класса — трехлучевые с дельтаобразным расположением электронных пушек и с планарным расположением электронных пушек. Трубки с планарным расположением электронных пушек еще называют кинескопами с самосведением лучей, так как воздействие магнитного поля Земли на три планарно расположенных луча практически одинаково и при изменении положения трубки относительно поля Земли не требуется производить дополнительные регулировки. В этих трубках применяются щелевые (Slot Mask) и теневые (Shadow Mask) маски.
Теневая маска — это самый распространенный тип масок для CRT-мониторов. Теневая маска состоит из металлической сетки перед частью стеклянной трубки с люминофорным слоем. Отверстия в металлической сетке работают как прицел, который обеспечивает то, что электронный луч попадает только на требуемые люминофорные элементы. Теневая маска создает решетку с однородными точками (триадами), где каждая такая точка состоит из трех люминофорных элементов основных цветов — зеленого, красного и синего, — которые светятся с различной интенсивностью под воздействием лучей из электронных пушек. Изменением тока каждого из трех электронных лучей можно добиться произвольного цвета элемента изображения, образуемого триадой точек.
Минимальное расстояние между люминофорными элементами одинакового цвета называется dot pitch (или шаг точки) и является показателями качества изображения. Шаг точки обычно измеряется в миллиметрах. Чем меньше значение шага точки, тем выше качество воспроизводимого на мониторе изображения.
Щелевая маска состоит из вертикальных линий. Вертикальные полосы разделены на эллиптические ячейки, которые содержат группы из трех люминофорных элементов трех основных цветов. Минимальное расстояние между двумя ячейками называется slot pitch (щелевой шаг). Чем меньше значение slot pitch, тем выше качество изображения на мониторе.
Апертурная решетка (aperture grill) — это тип маски, которая имеет решетку из вертикальных линий. Вместо точек с люминофорными элементами трех основных цветов апертурная решетка содержит серию нитей, состоящих из/ люминофорных элементов, выстроенных в виде вертикальных полос трех основных цветов. Такая система обеспечивает высокую контрастность изображения и хорошую насыщенность цветов, что вместе обеспечивает высокое качество мониторов с трубками на основе этой технологии. Маска представляет собой тонкую фольгу, на которой процарапаны тонкие вертикальные линии. Она держится на горизонтальной проволочке (в 17" мониторах — на двух), тень от которой видна на экране. Эта проволочка применяется для гашения колебаний. Минимальное расстояние между полосами люминофора одинакового цвета называется strip pitch (или шагом полосы) и измеряется в миллиметрах. Чем меньше значение strip pitch, тем выше качество изображения на мониторе.
Нельзя напрямую сравнивать размер шага для трубок разных типов: шаг точек (или триад) трубки с теневой маской измеряется по диагонали, в то время как шаг апертурной решетки, иначе называемый горизонтальным шагом точек, — по горизонтали. Поэтому при одинаковом шаге точек трубка с теневой маской имеет большую плотность точек, чем трубка с апертурной решеткой. Для примера, 0,25 мм strip pitch приблизительно эквивалентно 0,27 мм dot pitch.
Трубки с теневой маской дают более точное и детализированное изображение, поскольку свет проходит через отверстия в маске с четкими краями. Поэтому мониторы с такими CRT хорошо использовать при интенсивной и длительной работе с текстами и мелкими элементами графики. Трубки с апертурной решеткой имеют более ажурную маску, она меньше заслоняет экран и позволяет получить более яркое, контрастное изображение насыщенных цветов. Мониторы с такими трубками хорошо подходят для настольных издательских систем и других приложений, ориентированных на работу с цветными изображениями.
Для управления электронно-лучевой трубкой необходима управляющая электроника, качество которой во многом определяет и качество монитора. Разница в качестве управляющей электроники, создаваемой разными производителями, является одним из критериев, определяющих разницу между мониторами с одинаковой электронно-лучевой трубкой. Эта электроника должна оптимизировать усиление сигнала и управлять работой электронных пушек, которые инициируют свечение люминофора, создающего изображение на экране. Выводимое на экране монитора изображение выглядит стабильным, хотя на самом деле таковым не является. Изображение на экране воспроизводится в результате процесса, в ходе которого свечение люминофорных элементов инициируется электронным лучом, проходящим последовательно по строкам в следующем порядке: слева направо и сверху вниз на экране монитора. Этот процесс происходит очень быстро, поэтому нам кажется, что экран светится постоянно. В сетчатке наших глаз изображение хранится около 1/20 с. Если луч последовательно пробегает по всем горизонтальным линиям сверху вниз за время, меньшее 1/25 с, мы увидим равномерно освещенный экран с небольшим мерцанием. Чем быстрее электронный луч проходит по всему экрану, тем меньше будет заметно мерцание картинки. Считается, что такое мерцание становится практически незаметным при частоте повторения кадров (проходов луча по всем элемента изображения) примерно 75 в секунду. Однако эта величина в некоторой степени зависит от размера монитора. Мерцание мониторов с большими углами обзора становится заметным при больших частотах кадров.
LCD
LCD (Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Экран LCD-монитора представляет собой две прозрачные пластины с тонким слоем жидких кристаллов между ними. При появлении электрического поля свет, проходящий через жидкокристаллическую панель или отражающийся от нее, меняет плоскость поляризации. Для того чтобы человеческий глаз мог различать изменения в поляризации светового потока, добавляются два поляризационных фильтра. Экран разделен на отдельные элементы (ячейки), к которым подведены электроды, создающие электрическое поле. Для вывода цветного изображения необходима подсветка монитора сзади так, чтобы свет порождался в задней части LCD-дисплея. Это необходимо для того, чтобы можно было наблюдать изображение с хорошим качеством, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основных компонента.
Комбинируя три основных цвета для каждой точки или пиксела экрана, можно воспроизвести любой цвет.
Первые LCD-дисплеи были очень маленькими, около 8", в то время как сегодня они достигли размеров 15" для использования в ноутбуках, а для настольных компьютеров производятся 19" и более LCD-мониторы. На рис. 3.16 изображены LCD-мониторы в настольном исполнении. Вслед за увеличением размеров следует увеличение разрешения, вследствие чего появляются новые проблемы, требующие своего решения с помощью специальных технологий.
Технология STN (Super Twisted Nematic) позволяет увеличить торсионный угол (угол кручения) ориентации кристаллов внутри LCD-дисплея с 90 до 270°, что обеспечивает лучшую контрастность изображения при увеличении размеров монитора. Часто STN-ячейки используются в паре. Это называется технологией DSTN (Double Super Twisted Nematic), и этот метод очень популярен для мониторов портативных компьютеров, использующих дисплеи с пассивной матрицей, где DSTN обеспечивает улучшение контрастности при отображении изображений в цвете. Две STN-ячейки располагаются вместе так, чтобы при вращении они двигались в разных направлениях. Изображение формируется строка за строкой путем последовательного подведения на отдельные ячейки управляющего напряжения, делающего их прозрачными. Из-за довольно большой электрической емкости ячеек напряжение на них не может изменяться достаточно быстро, поэтому обновление картинки происходит медленно, изображение дрожит на экране. Маленькая скорость изменения прозрачности кристаллов не позволяет правильно отображать движущиеся изображения. Кроме того, между соседними электродами возникает некоторое взаимное влияние, которое может проявляться в виде колец на экране. Для решения части названных проблем применяют специальные хитрости, например разделение экрана на две части и применение двойного сканирования в одно и то же время обеих частей, в результате чего экран дважды регенерируется и изображение не дрожит и плавно отображается.
Также лучших результатов с точки зрения стабильности, качества, разрешения, гладкости и яркости изображения можно добиться, используя экраны с активной матрицей (active matrix). В активной матрице используются отдельные усилительные элементы для каждой ячейки экрана, компенсирующие влияние емкости ячеек и позволяющие значительно уменьшить время изменения их прозрачности. Активная матрица имеет лучшую яркость и возможность смотреть на экран даже с отклонением до 45° и более (то есть при угле обзора 120°—140°) без ущерба для качества изображения, что невозможно в случае с пассивной матрицей. При помощи активной матрицы можно отображать движущиеся изображения без видимого дрожания, так как время реакции дисплея с активной матрицей около 50 мкс против 300 мкс для пассивной матрицы и качество контрастности лучше, чем у CRT-мониторов. Яркость отдельного элемента экрана остается неизменной на всем интервале времени между обновлениями картинки, а не представляет собой короткий импульс света, излучаемый элементом люминофора CRT-монитора сразу после похождения по этому элементу электронного луча. Именно поэтому для LCD-мониторов достаточной является частота регенерации 60 Гц. Благодаря лучшему качеству изображений эта технология также используется и в мониторах для настольных компьютеров.
Функциональные возможности LCD-мониторов с активной матрицей почти такие же, как у дисплеев с пассивной матрицей. Разница заключается в матрице электродов, которая управляет ячейками жидких кристаллов дисплея. В случае с пассивной матрицей разные электроды получают электрический заряд циклическим методом при построчной регенерации дисплея, а в результате разряда емкостей элементов изображение исчезает, так как кристаллы возвращаются к своей изначальной конфигурации. В случае с активной матрицей к каждому электроду добавлен запоминающий транзистор, который может хранить цифровую информацию (двоичные значения 0 или 1), и в результате изображение сохраняется до тех пор, пока не поступит другой сигнал. Запоминающие транзисторы должны производиться из прозрачных материалов, что позволит световому лучу проходить сквозь них, а значит, транзисторы можно располагать на тыльной части
дисплея, на стеклянной панели, которая содержит жидкие кристаллы. Для этих целей используется пластиковая пленка, называемая Thin Film Transistor (или просто TFT). Ее толщина в пределах от 1/10 до 1/100 мкм. Технология создания TFT очень сложна, при этом имеются трудности с достижением приемлемого процента годных изделий из-за того, что число используемых транзисторов очень велико.
Разрешение LCD-мониторов одно, и его еще называют native, оно соответствует максимальному физическому разрешению CRT-мониторов. Это разрешение определяется размером пикселов, который у LCD-монитора фиксирован. LCD-монитор лучше всего воспроизводит изображение именно с таким разрешением. При этом есть возможность выводить на экран изображение с меньшим, чем native, разрешением. Для этого есть два способа. Первый называется центрированием, когда для отображения изображения используется только то количество пикселов, которое необходимо для формирования изображения с более низким разрешением. В результате изображение получается не во весь экран, а только в середине. Все неиспользуемые пикселы остаются черными, то есть вокруг изображения образуется широкая черная рамка. Второй метод называется растяжением. Суть его в том, что при воспроизведении изображения с более низким, чем native, разрешением используются все пикселы, то есть изображение занимает весь экран. Однако из-за того, что изображение растягивается на весь экран, возникают небольшие искажения и ухудшается резкость.
Стоит отметить и такую особенность части LCD-мониторов, как возможность поворота самого экрана на 90° с одновременным автоматическим разворотом изображения. В результате, например, если вы занимаетесь версткой, то теперь лист формата А4 можно полностью уместить на экране без необходимости использовать вертикальную прокрутку, чтобы увидеть весь текст на странице. Эта функция становится почти стандартной.
К преимуществам LCD-мониторов можно отнести то, что они действительно плоски в буквальном смысле этого слова, а создаваемое на их экранах изображение отличается четкостью и насыщенностью цветов. Отсутствуют искажения на экране и масса других проблем, свойственных традиционным CRT-мониторам. Добавим, что потребляемая и рассеиваемая мощность у LCD-мониторов существенно ниже, чем у CRT-мониторов.
При производстве мониторов используются и другие, более экзотические на данный момент технологии.
Плазменные мониторы PDP (Plasma Display Panels). Работа плазменных мониторов очень похожа на работу неоновых ламп, которые сделаны в виде трубки, заполненной инертным газом низкого давления. Внутрь трубки помещена пара электродов, между которыми зажигается электрический разряд и возникает свечение. Плазменные экраны создаются путем заполнения пространства между двумя стеклянными поверхностями инертным газом, например аргоном или неоном. Затем на стеклянную поверхность помещают маленькие прозрачные электроды, на которые подается высокочастотное напряжение. Под действием этого напряжения в прилегающей к электроду газовой области возникает электрический разряд. Плазма газового разряда излучает свет в ультрафиолетовом диапазоне, который вызывает свечение частиц люминофора в диапазоне, видимом человеком. Фактически, каждый пиксел на экране работает, как обычная флуоресцентная лампа (иначе говоря, лампа дневного света). Высокая яркость и контрастность наряду с отсутствием дрожания являются большими преимуществами таких мониторов. Технология FED (Field Emission Display). Мониторы FED основаны на процессе, который немного похож на тот, что применяется в CRT-мониторах, так как в обоих методах применяется люминофор, светящийся под воздействием электронного луча. В FED-мониторе используется множество маленьких источников электронов, расположенных за каждым элементом экрана, и все они размещаются в пространстве по глубине меньшей, чем требуется для CRT. Каждый источник электронов управляется отдельным электронным элементом) так же как это происходит в LCD-мониторах, и каждый пиксел затем излучает свет благодаря воздействию электронов на люминофорные элементы, как и в традиционных CRT-мониторах. При этом FED-мониторы очень тонкие.
Кратко остановимся на основных характеристиках монитора.
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ МОНИТОРА
Под размером монитора обычно понимают размер диагонали монитора (в дюймах), при этом размер видимой пользователем области экрана обычно несколько меньше, в среднем на 1", чем размер трубки. Производители могут указывать в сопровождающей документации два размера диагонали, при этом видимый размер обычно обозначается в скобках или с пометкой «Viewable size», но иногда указывается только один размер, размер диагонали трубки.
Разрешение монитора (или разрешающая способность) связана с размером отображаемого изображения и выражается в количестве точек по ширине (по горизонтали) и высоте (по вертикали) отображаемого изображения. Например, если говорят, что монитор имеет разрешение 640x480, это означает, что изображение состоит из 640x480 - 307200 точек в прямоугольнике, чьи стороны соответствуют 640 точкам по ширине и 480 точкам по высоте. Это объясняет, почему более высокое разрешение соответствует отображению более содержательного (детального) изображения на экране. Понятно, что разрешение должно соответствовать размеру монитора, иначе изображение будет слишком маленьким, чтобы его разглядеть. Возможность использования конкретного разрешения зависит от различных факторов, среди которых возможности самого монитора, возможности видеокарты и объем доступной видеопамяти, которая ограничивает число отображаемых цветов.
На величину максимально поддерживаемого монитором разрешения напрямую влияет частота горизонтальной развертки электронного луча, измеряемая в kHz (килогерцах, кГц). Значение горизонтальной развертки монитора показывает, какое предельное число горизонтальных строк может прочертить электронный луч на экране монитора за одну секунду. Соответственно, чем выше это значение (а именно оно, как правило, указывается на коробке для монитора), тем большее разрешение может поддерживать монитор при приемлемой частоте кадров. Частота кадровой развертки для экрана CRT-мониторов — это параметр, определяющий, как часто изображение на экране заново перерисовывается. Частота регенерации измеряется в Hz (герцах, Гц), где 1 Гц соответствует одному циклу в секунду. Частота регенерации монитора должна быть достаточной, чтобы не было заметно мерцания изображения. Чем выше частота регенерации, тем более устойчивым выглядит изображение на экране. Мерцание изображения приводит к утомлению глаз, головным болям и даже к ухудшению зрения. Минимально безопасной частотой кадров считается 75 Гц. Исследования показали, что при частоте вертикальной развертки выше 110 Гц глаз человека уже не может заметить никакого мерцания.
Мониторы опасны для здоровья. С целью снижения риска для здоровья различными организациями были разработаны рекомендации по параметрам мониторов, которым должны следовать производители устройств. Все стандарты безопасности для мониторов регламентируют максимально допустимые значения электрических и магнитных полей, создаваемых монитором при работе. Практически в каждой развитой стране есть собственные стандарты, но особую популярность во всем мире завоевали стандарты, разработанные в Швеции и известные под именами ТСО и MPRII.
ТСО (The Swedish Confederation of Professional Employees) — Шведская Конфедерация профессиональных коллективов рабочих. Стандарты ТСО разрабатываются с целью гарантировать пользователям компьютеров безопасную работу. Этим стандартам должен соответствовать каждый монитор, продаваемый в Швеции и в Европе. Рекомендации ТСО используются производителями мониторов для создания более качественных продуктов, которые менее опасны для здоровья пользователей. Суть рекомендаций ТСО состоит не только в определении допустимых значений различного типа излучений, но и в определении минимально приемлемых параметров мониторов, например поддерживаемых разрешений, интенсивности свечения люминофора, запаса яркости, энергопотребления, шумности и т. д. Более того, кроме требований в документах ТСО приводятся подробные методики тестирования мониторов.
В состав разработанных ТСО рекомендаций сегодня входят три стандарта: ТСО 92, ТСО 95 и ТСО 99. Цифры означают год их принятия. Большинство измерений во время тестирований на соответствие стандартам ТСО проводятся на расстоянии 30 см спереди от экрана и на расстоянии 50 см вокруг монитора.
Стандарт ТСО 92 был разработан исключительно для мониторов и определяет величину максимально допустимых электромагнитных излучений при работе монитора, а также устанавливает стандарт на функции энергосбережения мониторов. Кроме того, монитор, сертифицированный по ТСО 92, должен соответствовать стандарту на энергопотребление NUTEK и европейским стандартам на пожарную и электрическую безопасность.
Стандарт ТСО 95 распространяется на весь персональный компьютер, то есть на монитор, системный блок и клавиатуру, и касается эргономических свойств, излучений (электрических и магнитных полей, шума и тепла), режимов энергосбережения и экологии (с требованием обязательной адаптации продукта и технологического процесса производства на фабрике). Стандарт ТСО 95 существует наряду с ТСО 92 и не отменяет последний. Требования ТСО 95 по отношению к электромагнитным излучениям мониторов не являются более жесткими, чем по ТСО 92.
ТСО 99 предъявляет более жесткие требования, чем ТСО 95, в следующих областях: эргономика (физическая, визуальная и удобство использования), энергия, излучение (электрических и магнитных полей), окружающая среда и экология, а также пожарная и электрическая безопасность. Стандарт ТСО 99 распространяется на традиционные CRT-мониторы, плоскопанельные мониторы (Flat Panel Displays), портативные компьютеры (Laptop и Notebook), системные блоки и клавиатуры.
MPRII — это еще один стандарт, разработанный в Швеции. MPR II определяет максимально допустимые значения излучения магнитного и электрического полей, а также методы их измерения. Стандарты ТСО жестче, чем MPRII.
Дата добавления: 2015-06-27; просмотров: 2220;