Воздействие электромагнитными волнами

Физиотерапевтические методы, основанные на применении электромагнитных волн СВЧ-диапазона, в зависимости от длины волны получили два названия: микроволновая терапия (частота 2375 МГц, длина волны 12,6 см) и ДЦВ-терапия, т. е. терапия де­циметровых волн (частота 460 МГц, длина волны 65,2 см).

Наиболее разработана в настоящее время теория о тепловом действии СВЧ-полей на биологические объекты. Электромагнит­ная волна поляризует молекулы вещества и периодически пере­ориентирует их как электрические диполи. Кроме того, электро­магнитная волна воздействует на ионы биологических систем и вызывает переменный ток проводимости. Таким образом, в диэ­лектрике, находящемся в электромагнитном поле, происходит как изменение поляризации диэлектрика, так и протекание токов проводимости. Все это приводит к нагреванию вещества. Большое значение имеют диэлектрические потери, обусловленные пере­ориентацией молекул воды (γ-дисперсия, см. § 14.4). В связи с этим максимальное поглощение энергии микроволн происходит в таких тканях, как мышцы и кровь, а в костной и жировой ткани воды меньше, они меньше и нагреваются.

На границе сред с разными коэффициентами поглощения элек­тромагнитных волн, например на границе тканей с высоким и ни­зким содержанием воды, могут возникнуть стоячие волны, обус­ловливая местный перегрев тканей. Наиболее подвержены пере­греву ткани с недостаточным кровоснабжением и, следовательно, плохой терморегуляцией, например хрусталик глаза, стекловид­ное тело и др.

Электромагнитные волны могут влиять на биологические про­цессы, разрывая водородные связи и влияя на ориентацию макро­молекул ДНК и РНК.

При попадании электромагнитной волны на участок тела проис­ходит ее частичное отражение от поверхности кожи. Степень отра­жения зависит от различия диэлектрических проницаемостей воз­духа и биологических тканей. Если облучение электромагнитными волнами осуществляется дистанционно (на расстоянии), то может отражаться до 75% энергии электромагнитных волн. В этом случае невозможно по мощности, генерируемой излучателем, судить об энергии, поглощаемой пациентом в единицу времени. При кон­тактном облучении электромагнитными волнами (излучатель со­прикасается с облучаемой поверхностью) генерируемая мощность соответствует мощности, воспринимаемой тканями организма.

Глубина проникновения электромагнитных волн в биологиче­ские ткани зависит от способности этих тканей поглощать энер­гию волн, которая, в свою очередь, определяется как строением тканей (главным образом содержанием воды), так и частотой электромагнитных волн. Так, сантиметровые электромагнитные волны, используемые в физиотерапии, проникают в мышцы, ко­жу, биологические жидкости на глубину около 2 см, а в жир, кос­ти — около 10 см. Для дециметровых волн эти показатели при­близительно в 2 раза выше.

Учитывая сложный состав тканей, условно считают, что при микроволновой терапии глубина проникновения электромагнитных волн равна 3—5 см от поверхности тела, а при ДЦВ-терапии — до 9 см.

 

РАЗДЕЛ 5 Медицинская электроника

 

Электроника. Это понятие ши­роко распространено в настоящее время. Являясь технической наукой, электроника основывается прежде всего на достижениях физики. Можно смело сказать, что без электронной аппаратуры сегодня невозможны ни диагностика заболеваний, ни эффектив­ное их лечение. В разделе излагаются лишь некоторые, наиболее существенные аспекты общей и медицинской электроники и описывается наиболее характерная медицинская электронная ап­паратура. Некоторые приборы и аппараты медицинской электро­ники представлены в других разделах

 

ГЛАВА 16

 

Содержание электроники. Электробезопасность. Надежность медицинской электронной аппаратуры

В главе наряду с общим содержанием электроники рассмат­риваются важные практические вопросы: электробезопас­ность и надежность медицинской электронной аппаратуры.16.1. Общая и медицинская электроника. Основные группы медицинских электронных приборов и аппаратов

 

 

§ 16.1. Общая и медицинская электроника. Основные группы медицинских электронных приборов и аппаратов

 

Физика, как и любая другая наука, развивалась и развивается, в связи с потребностями общества, ее прогресс стимулируется практическими задачами. В свою очередь, развитие физики спо­собствует решению практических, в том числе и технических проблем. Так, например, в результате достижений в области ис­следований электромагнитных явлений получили бурное разви­тие соответствующие отрасли техники: электро- и радиотехника. Постепенно многие разделы радиотехники стали именовать ра­диоэлектроникой, или электроникой.

Термин «электроника» в значительной степени условный, ему трудно дать четкое определение. Правильнее всего, вероятно, под электроникой понимать область науки и техники, в которой рассматриваются работа и применение электровакуумных,ионных и полупроводниковых устройств (приборов).

Электронику в широком смысле слова (общую электронику) можно подразделить на группы либо по области применения, либо по классу используемых устройств, либо по категории теоретических вопросов. Так выделяют физическую электронику, имея в виду раздел физики, рассматривающий электропроводимость тел, контактные и термоэлектронные явления; под технической электроникой понимают те ее разделы, в которых описываются устройства приборов и аппаратов и схемы их включения; полу­проводниковой электроникой называют то, что относится к при­менению полупроводниковых приборов, и т. п.

Иногда всю электронику подразделяют на три крупные облас­ти: вакуумная электроника, которая охватывает вопросы созда­ния и применения электровакуумных приборов (электронные лампы, фотоэлектронные устройства, рентгеновские трубки); твердотельная электроника, которая охватывает вопросы созда­ния и применения полупроводниковых приборов, в том числе и интегральных схем, квантовая электроника — специфический раздел электроники, имеющий отношение к лазерам и мазерам.

Все эти примеры, с одной стороны, дают представление о со­держании электроники, с другой стороны, лишний раз отмечают неопределенность ее границ.

Электроника — прикладная отрасль знаний. Одно из распрост­раненных применений электронных устройств связано с диагнос­тикой и лечением заболеваний. Разделы электроники, в которых рассматриваются особенности применения электронных систем для решения медико-биологических задач, а также устройство со­ответствующей аппаратуры, получили название медицинской электроники.

Медицинская электроника основывается на сведениях из фи­зики, математики, техники, медицины, биологии, физиологии и других наук, она включает в себя биологическую и физиологиче­скую электронику.

Применения электроники в медицине многообразны, ибо это постоянно расширяющаяся область. В настоящее время многие традиционно «неэлектрические» характеристики — температуру, смещение тела, биохимические показатели и др. — при измерени­ях преобразуют в электрический сигнал. Информацию, представ­ленную электрическим сигналом, удобно передавать на расстоя­ние и надежно регистрировать. Можно выделить следующие ос­новные группы электронных приборов и аппаратов, используемых для медико-биологических целей.

Устройства для получения (съема), передачи и регистрации медико-биологической информации. Такая информация может быть не только о процессах, происходящих в организме (биологи­ческих тканях, органах, системах), но и о состоянии окружаю­щей среды (санитарно-гигиеническое назначение), о процессах, происходящих в протезах, и т. д. Сюда относится большая часть диагностической аппаратуры: баллистокардиографы, фонокарди-

ографы, реографы и др. Для подавляющего большинства этих приборов в радиотехническом отношении характерно наличие усилителей электрических сигналов.

К этой группе можно отнести и электромедицинскую аппара­туру для лабораторных исследований, например рН-метр.

Электронные устройства, обеспечивающие дозирующее воздей­ствие на организм различными физическими факторами (ультра­звук, электрический ток, электромагнитные поля и др.) с целью ле­чения: аппараты микроволновой терапии, аппараты для электрохи­рургии, кардиостимуляторы и др. С физической точки зрения эти устройства являются генераторами различных электрических сиг­налов.

Кибернетические электронные устройства: а) электронные вы­числительные машины для переработки, хранения и автоматиче­ского анализа медико-биологической информации; б) устройства для управления процессами жизнедеятельности и автоматического регулирования состоянием окружающей человека среды; в) элек­тронные модели биологических процессов и др.

Применение электронных медицинских приборов и аппаратов повышает эффективность диагностики и лечения и увеличивает производительность труда медицинского персонала.








Дата добавления: 2015-06-22; просмотров: 1255;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.