ТЕПЛОВЫЕ ЭЛЕКТРОСТАНЦИИ (ТЭС)
На современных ТЭС превращение теплоты в работу происходит в циклах, где в качестве рабочего тела используется водяной пар. Принципиальная технологическая схема ТЭС (рис.141,142), работающей по циклу Ренкена, состоит из парогенератора 1, турбины – 2, электрического генератора – 3, конденсатора – 4 и насоса – 5. В парогенераторе происходит сжигание топлива, за счет получаемой энергии вода нагревается и испаряется. Этому процессу на диаграмме Ренкина соответствует участок АВ, увеличение объема при постоянном давлении. Пар, получаемый в парогенераторе, направляется в турбину,где происходит его расширение и превращение внутренней энергии пара в механическую энергию, т.е. в турбине совершается полезная работа. Процесс расширения пара происходит по адиабате ВС(рис.141). Далее отработанный в турбине пар конденсируется и из конденсатора отводится теплота. Конденсации пара соответствует участок СД. Конденсат насосом подается в парогенератор, что сопровождается возрастанием давления воды при постоянном объеме, т.к. вода несжимаема. Этому соответствует участок ДА.
КПД цикла Ренкина, как и любой тепловой машины, характеризуется отношением теплоты, затраченной на работу, ко всей полученной теплоты от нагревателя
КПД = Q1- Q2 / Q1, (12-1)
где Q1 -количество теплоты, подведенное к рабочему телу в парогенераторе, Q2 - количество теплоты, отведенное охлаждающей водой в конденсаторе
Рис. 141 Схема идеального цикла Ренкена: АВ- подвод теплоты;ВС- преобразование энергии пара в механическую энергию,CD-охлаждение парав конденсаторе; DA-подача насосом конденсата (воды) в парогенератор.
Рис.142 Технологическая схема тепловой электростанции, работающей по циклу Ренкена: 1-парогенератор; 2- турбина; 3- электрический генератор; 4- конденсатор; 5- насос; АВС –пар; CDA – конденсат.
Рис. 143 Схема тепловой электростанции:--- топливо; - - - горячие газы; ~~~- пар; …. –конденсат;
Работа станции происходит следующим образом (рис.143). Из бункера 1 уголь поступает в дробильную усстановку 2, где превращается в пыль. Угольная пыль вместе с воздухом из воздуходувки 31 подается в топку 3. Теплота, получчаемая при сжигании угля, используется для преобразования воды в пар в трубах 4. Вода по змеевику 5 накачивается насосом 14 в барабан котла 51. Получаемый в парогенераторе перегретый пар имеет температуру порядка 600C и давление порядка 30МПа = 300Атм (1Н/м2 = 1Па, 1ммрт ст=133,3Па, 760 мм. рт ст=1атм=1 105Па=0,1Мпа). Пар, нагретый потоком горячих газов, уходящих в трубу 6, при высокой температуре и высоком давлении поступает сначала в первую ступень турбины 7 , а затем во вторую ступень 8. В турбине энергия пара преобразуется в механическую энергию вращения ротора генератора 9 , вырабатывающего электрическую энергию. Отработанный в турбине пар поступаетв конденсор 13, превращается в воду, которая насосом 14 подается в котел, а затем цикл превращения воды повторяется. Охлаждение пара в конденсаторе производится с помощью холодной воды, забираемой из водоема ( пруда, реки, озера) 11, накачиваемой насосом 12 и вновь выбрасывается в водоем. Продукты сгорания угля проходят через очистные сооружения, где выделяется зола, твердые частицы несговевшего угля и прочие примеси, а оставшиеся газы через трубу 6 выбрасываются в атмосферу.
Структурно, этот процесс можно представить так: Топливо(химическая энергия превращается в тепловую) → Теплота(тепловая энергия превращается в пар) → Механическая энергия ( осуществляется движение ротора электрического генератора) → Электрическая энергия(рис. 144).
Рис.144 Ступени преобразования химической энергии сжигания топлива в ТЭС
Такой удлиненный цикл сжигания угля позволяет использовать лишь 30-35% химической энергии..
Основные процессы теплового цикла паровых установок схематично можно представить так : в парогенераторах → подвод теплоты, в турбинах →расширение пара, в конденсаторах → охлаждение и отвод теплоты. С помощью насосов производится сжатие и охлажденный конденсат нагнетается в парогенератор.
Реакцию горения структурно можно представить так: топливо (уголь, дрова, нефть, горючий природный газ и т.д.) + окислитель (кислород) → продукты химической реакции (твердые частицы топлива,СО2, СО и т.д.).
Процесс горения угля. Среди полезных ископаемых, богатых углеродом особо важную роль для промышленности играют угли. Они представляют собой окаменевшие остатки растений и животных, находившихся на нашей планете отдаленные периоды (300-400млн. лет назад) ее существования. Уголь, образуется в условиях, когда растительный материал накапливается быстрее, чем происходит его бактериальное разложение. Идеальные условия для этого создаются в болотах, когда стоячая иода, обедненная кислородом, препятствует жизнедеятельности бактерий и тем самым предохраняет растительную массу от полного разрушения. На определенной стадии выделяемые в ходе разложения кислоты предотвращают дальнейшую деятельность бактерий. Так возникает торф -исходный продукт для образования угля. Если затем происходит захоронение торфа под другими наносами, то торф испытывает сжатие и , теряя воду и газы, преобразуется в уголь. Так под давлением наносов толщиной в 1 км из 20-метрового слоя торфа образуется пласт бурого угля толщиной 2 м. На большей глубине, порядка 5-6км и при более высокой температуре 20-метровый слой торфа становится пластом антрацита толщиной 1,5м. Различают три вида углей - антрацит, каменный и бурый. Наибольшим содержанием углерода характеризуется антрацит ((углерода до 95ат%) и наименьши бурый (65-70ат%). Кроме углерода , угли содержат воду и ряд летучих газов и органических соединений.
Химический состав угля - *84% углерода (С), * 2% серы (S ),* 1% азота (N2), * 8% кислорода (O2),8 5% водорода (H2)
При сгорании1кг угля выделяется 24 105 джоулей энергии. При сгорании 1кг нефти выделяется 3 106 дж. энергии. При сжигании 1л. сжиженного газа выделяется 24 106дж. Сгорание 1кг урана-235 выделяется энергия 5 106дж.
В обычных условиях углерод весьма инертен и химически мало активен.. Однако при повышении температуры химическая активность углерода сильно повышается.
Процесс химической реакции горения можно представит в виде формулы
С + О2 → СО2 (углекислый газ)
При недостатке кислорода образуется СО (угарный газ)
С + О2 → 2СО
СО - бесцветный газ, очень ядовитый, немного легче воздуха, без запаха. Воздух содержащий 0,1% СО смертельно опасен.
СО2.- составная чость воздуха. Обладает способностью задерживать тепловое излучение Земли и хорошо пропускает коротковолновую солнечное излучение. В результате этот газ способствует "парниковому эффекту", т.е. повышению температуры Земли.
Коэффициент полезного действия ТЭС сравнительно низок, так как при их работе для получения электрической энергии необходимо трехкратное превращение энергии: энергия топлива присжигании превращается во внутренюю энергию водяного пара в котле ( теплоту), затем энергия пара в паровой турбине превращается в механическую энергию вращения вала и только потом механическая энергия турбины и вала превращается в электрическую энергию в генераторе. При каждом превращении присутствуют неизбежные потери энергии (рис.145).
Рис. 145 Тепловой баланс ТЭС: Q, Q эл и Qтп – теплота, полученная при сжигании топлива, превращенная в электроэнергию и использованная на теплофикацию, соответственно; ΔQкн,Δ Q тб,ΔQ тр, ΔQкт- потери теплоты в конденсаторе, турбогенераторе, трубопроводах и котельном агрегате, соотверственно.
На современных тепловых энергоблоках мощностью 150, 300, 500 и 800МВт используют давление пара до 240- 250атм при температураз пара 550-5600С, КПД таких агрегатов составляетдо 40%.
Для выработки электрической энергии на ТЭС в большинстве своем используются неявнополюсные роторы и большие скороси их вращения.
Серийный генератор ТВВ-200 (некоторые технические данные)
Р=200 000 000Вт=200МВт, Напряжение – 20КВ=20 000В, Cosφ=0,85,P=1
n2 = 3000об/мин, диаметр ротора -1,2м, длина активной части ротора – 7м, КПД генератора – 99%.
Дата добавления: 2015-06-17; просмотров: 4286;