Тепловые параметры реактора, ТВС и твэлов

В табл. 5.15 приведены максимально - возможные в течение кампании значения коэффициентов неравномерностей энерговыделений и мощности ТВС для типовых ячеек активной зоны реактора. Значения коэффициентов неравномерностей энерговыделений приняты по данным раздела 5.3.6, полученным при моделировании на физической модели реактора последовательных загрузок в каждой из этих ячеек свежей ТВС при среднем выгорании по активной зоне около 20%.

 

Таблица № 5.15

Максимально-возможные в течение кампании мощностные характеристики ТВС в типовых ячейках активной зоны

Номер типовой ячейки
Максимальное значение коэффициента неравномерности энерговыделений:          
· по ячейкам зоны, Ks при максимуме энерговыделений в типовой ячейке   1,27(30)   1,09(30)   0,93(32)   1,35(29)   2,16(29)
· по сечению ТВС, Кк 1,43 2,00 1,87 2,02 2,06
· по высоте ТВС, Kz 1,25 1,25 1,25 1,25 1,25
Максимально возможная мощность ТВС, МВт   4,363   3,745   2,99   4,803   7,685

Цифры в скобках первой строки табл. № 5.15 соответствуют округленному до целого значения количеству полномасштабных ТВС (в расчете на 188 твэлов), находящихся в энерговыделяющем пространстве активной зоны на момент ее состояния, соответствующего максимальным значениям коэффициентов неравномерности энерговыделений для типовой ячейки. Это количество определяется положением КО (долей введенной в зону топливной подвески) и количеством ТВС 184.05 (160 твэлов), находящихся в активной зоне (для данных, приведенных в табл.5.15, оно принято равным 6).

Расчеты максимальных значений температурных параметров твэлов, которые могут реализовываться в течение кампании в типовых ячейках активной зоны, для стационарного режима работы реактора на номинальном уровне мощности 100 МВт проводился по программе КАНАЛ-К [5.32]. В каждой ТВС по табл. № 5.15 обсчитывался фрагмент из 8 соседних наиболее напряженных твэлов, включая и твэл с максимальным энерговыделением. Исходные данные и результаты расчета сведены в табл. № 5.16.

 

Таблица № 5.16

Расчетные параметры ТВС и твэлов при мощности реактора100 МВт

Параметр Значение
Мощность реактора, МВт
Температура теплоносителя на входе в активную зону, оС  
Давление теплоносителя на входе в реактор, МПа  
Температура теплоносителя в нижней камере смешения, оС   88,5
Номер типовой ячейки
Расход теплоносителя через ТВС, м3 40,2 49,9 37,8 65,7 121,8
Средняя скорость теплоносителя, м/с 3,9 4,9 3,7 6,6 12,0
Температура теплоносителя на выходе из расчетной ячейки с максимальным энерговыделением, оС                    
Максимальная температура оболочки твэла во впадине креста, оС   300,1   301,1   298,1   304,7   313,5
Максимальная температура топливной композиции в центре креста, оС   416,2   428,1   398,3   463,6   575,0
Максимальная тепловая нагрузка, МВт/м2 7,0 8,4 6,3 10,8 17,6
Максимальный расчетный коэффициент запаса по критическим тепловым нагрузкам, Ккр     1,51     1,51     1,51     1,51     1,51

 

Следствием используемого на реакторе СМ-3 режима частичных перегрузок распределение энерговыделений по активной зоне изменяется как от кампании к кампании, так и в процессе каждой отдельной кампании. При перегрузках свежие ТВС устанавливаются, как правило, по две во внутренний и наружный слои зоны и не более двух ТВС в квадранте. В процессе кампании распределение энерговыделений зависит от перемещения РО СУЗ, изменения объема зоны за счет ввода топливных догрузок КО, неравномерных по зоне выгорания и отравления. С учетом этого и реализация приведенных в табл. № 5.16 режимов охлаждения твэлов в том или ином наборе топливных ячеек также будет зависеть от конкретной кампании и ее протекания.

Особенностью работы твэлов в реакторе СМ-3, как и в СМ-2, является использование форсированного охлаждения самых энергонапряженных твэлов за счет допущения поверхностного кипения теплоносителя во всех типовых ячейках зоны в режимах с максимальным энерговыделением в ТВС этих ячеек (гидропрофилирование с обеспечением одинакового запаса до кризиса). На части твэлов с максимальным энерговыделением температура наружной поверхности оболочки твэлов выше температуры насыщения, что вызывает образование пузырей в микровпадинах ее поверхности. В свою очередь, недогрев теплоносителя до температуры насыщения приводит к быстрой конденсации паровых пузырьков, и, таким образом, объемное паросодержание в потоке отсутствует. Подкипание теплоносителя увеличивает коэффициент теплоотдачи, что обуславливает сохранения температуры оболочки твэлов на сравнительно низком уровне. За все время эксплуатации реакторов СМ-2 и СМ-3 гидравлической и нейтронной нестабильностей в работе активной зоны и СУЗ не отмечено.








Дата добавления: 2015-06-17; просмотров: 1289;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.