Промышленные титановые сплавы

 

По структуре в равновесном состоянии титановые сплавы подразделяются на α-, псевдо-α-, (α+β)-, псевдо-β- и β-сплавы.

К сплавам с α-структурой относятся сплавы титана с алюминием (например, ВТ5), а также сплавы, дополнительно легированные оловом или цирконием (например, ВТ5-1). Они характеризуются высокими механическими свойствами при криогенных и повышенных температурах, имеют высокую термическую стабильность свойств, но не поддаются термической обработке и обладают низкой технологической пластичностью.

Псевдо-α-сплавы имеют преимущественно α-структуру и небольшое количество β-фазы (1…5%) вследствие дополнительного легирования β-стабилизаторами: Mn, V, Nb, Mo и др. Сохраняя достоинства α-сплавов, они, благодаря наличию β-фазы, обладают высокой технологической пластичностью. Сплавы с низким содержанием алюминия (2…3%) обрабатываются давлением в холодном состоянии и только при изготовлении сложных деталей их нагревают до 500…700°С (ОТ4, ОТ4-1). Сплавы с большим содержанием алюминия при обработке давлением требуют нагрева до 600…800°С. На прочность этих сплавов, помимо алюминия, благоприятно влияют цирконий и кремний. Цирконий, неограниченно растворяясь в α-фазе, повышает температуру рекристаллизации. Кроме того, он способствует увеличению растворимости β-стабилизаторов в α-фазе, что вызывает рост прочности при обычных и высоких температурах. Кремний повышает прочность в результате образования тонкодисперсных силицидов, трудно растворимых в α-фазе. Поэтому псевдо-α-сплавы с содержанием алюминия 7…8% и легированные Zr, Si, Mo, Nb, V (BT20) обладают наибольшей среди титановых сплавов жаропрочностью.

Недостаток этих сплавов – склонность к водородной хрупкости. Водород мало растворим в α-фазе и присутствует в структуре в виде гидридов, которые снижают пластичность и вязкость сплавов. Допустимое содержание водорода в псевдо-α-сплавах колеблется в пределах 0,005…0,02%.

Двухфазные (α+β)-сплавы обладают лучшим сочетанием технологических и механических свойств. Они легированы алюминием и β-стабилизаторами.

Устойчивость β-фазы и термическую стабильность сплавов сильно повышают изоморфные β-стабилизаторы (Mo, V, Nb). Молибден оказывает сильное упрочняющее действие, особенно при содержании его в сплаве более 4%. Слабее упрочняют V и Nb, но при этом незначительно снижают пластичность сплавов. Однако наибольшее упрочнение достигается при легировании титана β-стабилизаторами, образующими эвтектику (Fe, Cr, Мn). Поэтому в состав двухфазных промышленных сплавов входят как изоморфные, так и β-стабилизаторы, образующие эвтектику.

Сплавы α+β упрочняются после закалки и старения. В отожженном и закаленном состояниях они имеют хорошую пластичность, а после старения – высокую прочность при обычных и повышенных температурах. При этом, чем больше β-фазы содержится в структуре сплава, тем он прочнее в отожженном состоянии и сильнее упрочняется при термической обработке.

Двухфазные сплавы удовлетворительно свариваются и обрабатываются резанием. После сварки требуется отжиг для повышения пластичности сварного шва.

Псевдо-β-сплавы (ВТ15) – высоколегированные в основном β-стабили-заторами сплавы. Суммарное количество легирующих элементов, как правило, превышает 20%. Наиболее часто для легирования используют Мо, V, Сг, реже – Fe, Zr, Sn. Алюминий присутствует почти во всех сплавах, но в небольших количествах (~3%). В равновесном состоянии сплавы имеют структуру преимущественно β-фазы с небольшим количеством α-фазы. После закалки их структура – метастабильная β'-фаза. В этом состоянии сплавы обладают хорошей пластичностью (δ = 12...40%; ψ ≈ 30...60%), легко обрабатываются давлением, имеют сравнительно невысокую прочность (σв ≈ 650...1000 МПа). В зависимости от химического состава временное сопротивление после старения составляет 1300…1800 МПа. У некоторых сплавов σв при старении увеличивается более чем в 1,5 раза. Плотность этих сплавов находится в интервале 4,9…5,1 т/м3. Сплавы отличаются высокой удельной прочностью, обладают низкой склонностью к водородной хрупкости, удовлетворительно обрабатываются резанием; их недостатки – чувствительность к примесям кислорода и углерода, которые вызывают снижение пластичности и вязкости; пониженная пластичность сварных швов и низкая термическая стабильность.

Наибольшее распространение в промышленности получил сплав ВТ15. Его выпускают в виде листов, полос, прутков, поковок. Этот сплав рекомендуется для длительной работы при температуре до 350°С.

Однофазные β-сплавы не имеют промышленного применения, так как для получения устойчивой β-структуры они должны быть легированы большим количеством дорогих, дефицитных, обладающих высокой плотностью изоморфных β-стабилизаторов (V, Mo, Nb, Та). Такие сплавы дорого стоят, имеют пониженную удельную прочность

Титановые сплавы имеют хорошие литейные свойства. Небольшой температурный интервал кристаллизации обеспечивает им высокую жидкотекучесть и хорошую плотность отливки. Они обладают малой склонностью к образованию горячих трещин и небольшой линейной усадкой (1%); их объемная усадка составляет около 3%.

К недостаткам литейных титановых сплавов относятся большая склонность к поглощению газов и высокая активность при взаимодействии с формовочными материалами. Поэтому их плавку и разливку ведут в вакууме или в среде нейтральных газов. Для получения крупных фасонных отливок (до 300…500 кг) используют чугунные и стальные формы; мелкие детали отливают в оболочковые формы, изготовленные из специальных смесей. Для фасонного литья применяют сплавы, аналогичные по химическому составу некоторым деформируемым (ВТ5Л, ВТЗ-1Л, ВТ14Л), а также специальные литейные сплавы.

Литейные титановые сплавы обладают более низкими механическими свойствами, чем деформируемые. Упрочняющая термическая обработка резко снижает пластичность литейных сплавов и поэтому не применяется.

Получили достаточно широкое распространение сплавы на основе интерметаллидов титана, которые подразделяются на жаропрочные и сплавы, обладающие памятью формы.

Жаропрочные сплавы относятся к системе Ti-А1, их структура состоит из α- и γ-фазы (Тi3Аl и TiAl, соответственно). Эти сплавы по жаропрочности превосходят все титановые сплавы и многие жаропрочные стали, приближаясь по свойствам к сплавам на основе никеля. Плотность этих сплавов составляет 3500 кг/м3.

Основу сплавов, обладающих памятью формы, составляет никелид титана (TiNi). Сплавы, обладающие памятью формы, применяются в космической технике для самораскрывающихся антенн, предварительно получивших компактную форму для облегчения доставки на космический корабль. Эти сплавы используются при установке саморасклепывающихся заклепок в труднодоступных местах конструкции и для самосрабатывающих соединительных муфт трубопроводов.








Дата добавления: 2015-04-07; просмотров: 1096;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.