Нарушение функций нервных клеток и проводников
Нарушение проведения возбуждения
Распространение возбуждения по нерв-нрму волокну обеспечивается последовательным сочетанием одних и тех же процессов: деполяризацией участка мембраны волокна — -»- входом в этом участке Ма+ —->-деполяризацией соседнего участка мембраны — —>• входом в этом участке N3"^ и т. д.- При недостаточном входе Ыа+ нарушается генерация распространяющегося потенциала действия и проведение прекращается. Такой эффект имеет место при блокаде Ка-каналов местными анестетиками (новокаин, лидокаин и др.) и рядом других химических агентов. Специфическим блокатором N3-каналов является тетродотоксин — яд, вырабатывающийся во внутренних органах рыбы фугу. Блокирование проведения возбуждения вызывают?акжёвёщ^СТва," нарушающие процесс реполяризации мембраны, связанный с закрыванием Ыа-каналов. К ним относятся инсектициды (например, ДДТ), ве-ратридин, аконитин, батрахотоксин и др. Исходная разность концентрации ионов и К+ по обе стороны мембраны в 10—15 раз больше снаружи, К+ в 50— 70 раз больше внутри), необходимая для генерации потенциала действия, восстанавливается и поддерживается активным транспортом ионов Ка+, К+-насосом. Он выкачивает наружу Ка+, поступивший внутрь (в цитоплазму) во время возбуждения, в обмен на наружный К+, который вышел наружу во время возбуждения. Деятельность насоса, роль которого выполняет встроенная в мембрану N3-, К-АТФ-азз, обеспечивается энергией, высвобождающейся при расщеплении АТФ. Дефицит энергии ведет к нарушению работы насосз, что обусловливает неспособность мембраны генерировать потенциал действия и проводить возбуждение.
Такой эффект вызывают разобщители окислительного фосфорилирования (например, динитрофе-нол) и другие метаболические яды, а также ишемия и длительное охлаждение участка нерва. Ингибируют насос и как следствие этого нарушают проводимость сердечные гли-козиды (например, уабаин, строфантин) при их применении в больших дозах.
Проведение возбуждения по аксону нарушается при различных видах патологии периферических нервов и нервных волокон в ЦНС — при воспалительных процессах, Рубцовых изменениях нерва, при сдавлении нервных волокон, при демиелинизации волокон (аллергические процессы, рассеянный склероз), при ожогах и др. Проведение возбуждения прекращается при дегенерации аксона.
Нарушение аксонального транспорта
Аксональный транспорт из тела нейрона в нервное окончание и нервного окончания в тело нейрона осуществляется при участии нейрофиламентов, микротрубочек и кон-трактильных актино- и миозиноподобных белков, сокращение которых зависит от содержания Са2+ в среде и от энергии расщепления АТФ. Вещества, разрушающие микротрубочки и нейрофиламенты (колхи-цин.винбластин и др.), недостаток АТФ, метаболические яды, создающие дефицит энергии (динитрофенол, цианиды), нарушают аксоток. Аксональный транспорт страдает при дегенерации аксона, вызываемой недостатком витамина Ве и витамина Вч (болезнь бери-бери), промышленными ядами (например, акриламидом, гексахлорофосом), солями тяжелых металлов (например, свинца), фармакологическими препаратами (например, дисульфирамом), алкоголем; при диабете, сдавлении нервов, дистрофических повреждениях нейрона. При перерыве аксона возникает уоллеровская дегенерация (распад) его периферической части и ретроградная дегенерация центральной части. Эти процессы -связаны с нарушением трофики обеих частей аксона.
Расстройства аксонального транспорта трофогенов и веществ, необходимых для образования и выделения медиаторов нервным окончанием, обусловливают развитие дистрофических изменений нейронов и иннервиру-емых тканей и нарушение синаптических процессов. Распространение с аксональным транспортом и патотрофогенов, антител к нервной ткани и к нейромедиаторам приводит к вовлечению в патологический процесс нейронов в отдельных отделах ЦНС.
Патология дендритов
Дендриты и шипики являются самыми ранимыми структурами нейрона. При старении шипики и ветви дендритов редуцируются, при некоторых дегенеративных и ат-рофических заболеваниях мозга (старческое слабоумие, болезнь Альцгеймера) они не выявляются. Дендро-шипиковый аппарат страдает при гипоксии, ишемии, сотрясении мозга, стрессорных и невротизирующих воздействиях. Патология дендритов связана также с нарушением их микротрубочек, которые исчезают при действии различных патогенных агентов.
Патология нейрональных мембран
Повреждения как клеточной (цитоплазма-тической),. так и внутриклеточных мембран возникают при различных патогенных воздействиях и сами являются причиной дальнейшего развития патологии нейрона. Усиленное перекисное окисление липи-дов (ПОЛ) нейрональных мембран оказывает влияние не только на мембранные, но и на другие внутриклеточные процессы (см. разд. 3.1.5).
Практически нет патологического процесса в нервной системе, при котором не возникало бы усиленного ПОЛ. Оно имеет место при эпилепсии, эндогенных психозах (например, шизофрении, маниакально-депрессивном синдроме), при неврозах, различного рода стрессах и повреждениях, при ишемии, хронической гипоксии, функциональных перегрузках нейронов и пр. С ним связана дальнейшая гиперактивация нейронов.
Вследствие увеличения проницаемости мембран происходит выход из нейрона различных веществ, в том числе антигенов, которые вызывают образование антиней-рональных антител, что приводит к развитию аутоиммунного процесса. Нарушение барьерных свойств мембран обусловливает возрастание тока ионов Са2+ и Ка+ в нейрон и К+ — из нейрона; это в сочетании с недостаточностью энергозависимых Ка+-, К+- и Са2+-насосов (их деятельность изменяется также под влиянием усиленного ПОЛ) приводит к частичной деполяризации мембраны. Увеличенный вход Са + не только вызывает гиперактивацию нейрона, но и при чрезмерном его содержании в клетке ведет к патологическим изменениям метаболизма и внутриклеточным повреждениям. Весь указанный комплекс процессов, если он не подавляется и не компенсируется, обусловливает гибель нейрона.
Нормализация ПОЛ и стабилизация нейрональных мембран должны быть частью комплексной патогенетической терапии различных форм патологии НС.
Синаптическая стимуляция и повреждение нейронов
Возбуждающая синаптическая стимуляция может играть важную роль в раз-зитии патологии нейрона. Усиленная и дли-гельная синаптическая стимуляция сама по :ебе вызывает функциональное перенапряжение нейрона, его собственный стресс, ко-горый может завершиться дегенерацией вну-гриклеточных структур и развитием дистрофического процесса. Стрессорные повреждения усиливаются при нарушениях микроциркуляции и мозгового кровообращения, 1ри действии токсических факторов. Первостепенное значение синаптическая стимуляция имеет при развитии анокси-неских (ишемических.) повреждений. Куль-гура тканей нейронов становится чувстви-гельной к аноксии лишь после установления синаптических контактов между нейронами. Весьма чувствительны к аноксии нейроны коры и гиппокампа, в которых имеется высокая плотность возбуждающих синаптических входов. Синаптическая стимуляция реализуется через действие возбуждающих аминокислот (глутамат, аспартат, Ь-гомоцистеинат), причем эти повреждения подобны тем, которые возникают при ишемии и связаны с увеличенным содержанием внутриклеточного Са2+. Этот эффект известен как нейротоксическое действие возбуж- . дающих аминокислот. С синаптической гиперактивацией, действием возбуждающих аминокислот и гипоксией связаны повреждение и гибель нейронов при эпилептическом статусе и в постишемическом периоде. При этом к патогенному действию указанных факторов присоединяется энергетический дефицит. В связи с изложенным становятся понятными благоприятные эффекты (т. е. ослабление синаптического воздействия) уменьшения функцинальной нагрузки, предотвращение дополнительных раздражений, «охранительное», по И. П. Павлову, торможение обратимо поврежденных нейронов.
Нарушение структурного гомеостаза нейрона
Значительную роль в патологии нейрона играют нарушения внутриклеточного структурного гомеостаза. В норме процессы изнашивания и распада внутриклеточных структур уравновешиваются процессами их обновления и регенерации. Совокупность этих процессов составляет динамический структурный внутриклеточный гомеостаз. Внутриклеточная регенерация — универсальный биологический механизм, имеющий место во всех клетках организма. Для жизнедеятельности нейрона, который, как высокодифференцированная клетка, не способен митотически делиться, этот механизм имеет существенное значение: внутриклеточная регенерация является единственным способом структурного обновления нейронов и поддержания их целостности. К ней относится синтез белков, образование внутриклеточных органелл, митохондрий, мембранных структур, рецепторов, рост нервных отростков (аксоны, дендриты, дендритные шипики) и др. Процессы внутриклеточной регенерации требуют высокого энергетического и трофического обеспечения и полноценного метаболизма клетки. При повреждениях нейрона, возникновении энергетического и трофического дефицита, нарушениях деятельности генома страдает внутриклеточная регенерация, падает пластический потенциал клетки, распад внутриклеточных структур не уравновешивается их восстановлением — происходят глубокие нарушения динамического структурного гомеостаза нейрона; при прогрессировании этого процесса нейрон погибает.
Нарушение деятельности нейрона при изменении процессов внутриклеточной сигнализации После восприятия рецептором сигнала (связывания рецептором нейромедиатора, гормона и др.) в нейроне возникает каскад цепных метаболических процессов, определяющих необходимую активность нейрона. Существенную роль в этих процессах играют так называемые усилительные, или пусковые, ферменты и образующиеся под их влиянием вещества-посредники, вторичные мессенджеры. Два типа из указанных процессов наиболее изучены: в одном из них (система АЦ-аза-цАМФ) роль пускового усилительного 'фермента играет аденилатциклаза (АЦ-аза), а роль связанного с ней вторичного мес-сенджера — циклический аденозинмонофос-фат (цАМФ); в другом (система фосфоино-зитидов) пусковым ферментом является фос-фолипаза С, а в качестве вторичных мес-сенджеров выступают инозиттрифосфат (ИФ3) и диацилглицерин (ДАГ). Роль универсального вторичного мессенджера играет Са , принимающий участие практически во всех внутриклеточных процессах. Существенным результатом деятельности указанных систем и Са2"1" является активация ряда протеинкиназ, которые обусловливают фосфорилирование и повышение, таким образом, активности различных функциональных белков — мембранных, цитоплазматических и ядерных, ионных каналов, с чем связаны осуществление функций нейрона и его жизнедеятельность.
Совокупность указанных каскадных мембранных и внутриклеточных процессов составляет эндогенную усилительную систему нейрона, которая может обеспечить многократное усиление входного сигнала и возрастание его эффекта на выходе из нейрона. Так, каскад метаболических процессов АЦ-азного пути может усилить стимул в 107— 108 раз. Благодаря этому возможно выявление и реализация слабого сигнала, что имеет особое значение в условиях патологии, при нарушении синаптического проведения. Многие изменения функций нейрона связаны с действием патогенных агентов на те или иные звенья указанных систем внутриклеточной сигнализации. Фармакологическая коррекция деятельности нейрона и эффекты лечебных средств также реализу ются через соответствующие изменения этих систем. Так, холерный и коклюшный токсины действуют на процессы, связанные с активностью мембранных С-белков, активирующих или угнетающих АЦ-азу. Ксантины (теофиллин, кофеин) обусловливают накопление цАМФ, что приводит к усиленной деятельности нейрона вплоть до его гиперактивации. При действии ряда противосу-дорожных препаратов (например, дифенин-гидантоина, карбамазепина, бензодиязепи-нов) и психотропных средств (например, трифтазина) угнетаются разные пути фосфо-рилирования белков, благодаря чему снижается активность нейронов. Ионы лития, применяемые при лечении некоторых эндогенных психозов, ослабляют деятельность системы фосфоинозитидов. С усиленным входом Са2+ связана эпилептизация нейронов, блокада этого входа антагонистами Са2+ подавляет эпилептическую активность.
Гиперактивность нейрона
Гиперактивность нейрона обусловлена значительным, выходящим из-под контроля нарушением баланса между возбуждением и торможением нейрона в пользу возбуждения. В функциональном отношении она заключается в продуцировании нейроном усиленного потока импульсов, который может иметь различный характер: высокочастотные потенциалы действия; отдельные разряды; разряды, сгруппированные в пачки; и пр. Особый вид гиперактивности представляет собой пароксизмальный деполяризационный сдвиг (ГГДС) в мембране, на высоте которого возникает высокочастотный разряд (рис. 110). Такой вид гиперактивности рассматривается как проявление эпилептизации нейрона.
Указанный сдвиг баланса между возбуждением и торможением может быть обусловлен либо первичным усиленным возбуждением нейрона, преодолевающим тормозный контроль, либо первичной недостаточностью тормозного контроля. Первый механизм реализуется значительной деполяризацией мембраны и усиленным входом Ка+ и Са2+ в нейрон, второй — расстройством механизмов, обеспечивающих гиперполяризацию мембраны: нарушением выхода К~*~ из нейрона и входа С1~ в нейрон.
Существенным эндогенным регулятором активности нейрона является у-аминомасля-ная кислота (ГАМК). Она вызывает торможение нейрона при связывании со своим рецептором, входящим в сложный белковый комплекс, который состоит из нескольких субъединиц; при активации комплекса под влиянием ГАМК усиливается поступление С1~ в нейрон.
При растормаживании нейрона в связи с ослаблением гиперполяризации и деполя-
ризацией мембраны происходит усиление поступления Са2+ в нейрон. Кроме того, Са2 , находясь уже в цитозоле, нарушает поступление С1~ в нейрон, ослабляя, таким образом, изнутри «ГАМКовое» торможение. Со всеми этими путями действия Са2+ связана эпилептизация нейрона, возникаю-~1цая под влиянием конвульсантов, которые нарушают «ГАМКовое» торможение. Многие конвульсанты (например, пенициллин, ко-разол и др.) оказывают сложное действие на нейрон, одновременно активируя возбуждающие и инактивируя тормозные механизмы. Хроническая стимуляция нейрона (например, при прямом электрическом раздражении, синаптическом воздействии, под влиянием возбуждающих аминокислот и др.) даже слабой интенсивности может с течением времени привести к гиперактивации нейрона. С другой стороны, выключение афферентации нейрона также обусловливает гиперактивацию нейрона. Этот эффект объясняется повышением чувствительности нейрона при де-нервации и нарушением тормозных процессов.
Таким образом, патологическая гиперактивация нейронов, их эпилептизация, представляет сложный комплекс разнообразных мембранных и внутриклеточных процессов. Для подавления эпилептической активности целесообразно комплексное применение веществ, нормализующих основные патогенетические звенья процесса. Среди корригирующих воздействий первостепенное значение имеют блокада входа Са2+ и восстановление тормозного контроля.
Дата добавления: 2015-06-10; просмотров: 2071;