ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №17
1. Операционный усилитель. Инвертирующий ОУ. Вывести формулу коэффициента усиления, привести структурную схему и передаточную характеристику инвертирующего ОУ.
Операционный усилитель (ОУ) - это модульный многоканальный усилитель с дифференциальным входом, по своим характеристикам приближающийся к идеальному усилителю.
С идеальным усилителем обычно ассоциируются следующие свойства: бесконечный коэффициент усиления по напряжению Кu , бесконечное полное входное сопротивление Zвх , равенство нулю выходного напряжения при отсутствии сигнала на входе Uвых = 0 при Uвх = 0, бесконечно широкая полоса пропускания D f (отсутствие задержки при прохождении сигнала через усилитель).
Само название "операционный усилитель" связано с матеметическими операциями, которые в начале развития вычислительных устройств осуществлялись с помощью операционных усилителей (ОУ). Функции современных интегральных ОУ стали более универсальными, а сами ОУ, являясь источниками напряжения, управляемыми напряжением, находят широкое применение в устройствах современной электроники.
Интегральные ОУ используются в качастве инвертирующих и неинвертирующих усилителей и повторителей напряжения во многих электронных устройствах. На их основе создаются различные интеграторы, дифференциаторы и сумматоры; схемы умножения, деления, логарифмирования, антилогарифмирования. Различные функциональные преобразователи, схемы сжатия сигнала, источники постоянного тока и стабильного напряжения, компараторы, гармонические и релаксационные генераторы, активные фильтры и другие устройства в большинстве случаев раелизуются на интегральных ОУ. Многие устройства на основе интегральных ОУ имеют малые габариты, массу и стоимость.
Условное обозначение ОУ показано на (рис. 1.1)
Рис. 1.1
Один из входов усилителя (+) называется неинвертирующим, а второй (-) или (o) - инвертирующим.
При подаче сигнала на неинвертирующий вход приращение выходного сигнала совпадает по знаку (фазе) с приращением входного сигнала. Если же сигнал подан на инвертирующий вход, то приращение выходного сигнала имеет обратный знак(протиаоположный по фазе) по сравнению с приращением входного сигнала.
Операционный усилитель (ОУ) – это высококачественный усилитель, предназначенный для усиления как постоянных, так и переменных сигналов. Вначале такие усилители использовались в аналоговых вычислительных устройствах для выполнения математических операций (сложения, вычитания и т. д.). Это объясняет происхождение термина «операционный».
В настоящее время операционные усилители широко используются в виде полупроводниковых интегральных схем. Эти схемы содержат большое число (десятки) элементов (транзисторов, диодов и т. д.), но по размерам и стоимости приближаются к отдельным транзисторам. Операционные усилители удобно использовать для решения самых различных задач преобразования и генерирования маломощных сигналов, поэтому эти усилители очень широко применяются на практике.
Рассмотрим наиболее широко используемые разновидности операционных усилителей, для питания которых применяются два источника напряжения (обычно +15 В и –15 В). По-другому это называется питанием от источника с нулевым выводом или от расщепленного источника.
Условное графическое обозначение операционного усилителя показано на рис. 7.1.
Рис. 7.1. Графическое обозначение операционного усилителя
Операционный усилитель (ОУ) предназначен для выполнения математических операций в аналоговых вычислительных машинах. Первый ламповый ОУ K2W был разработан в 1942 году Л.Джули (США). Он содержал два двойных электровакуумных триода. Первые ОУ представляли собой громоздкие и дорогие устройства. С заменой ламп транзисторами операционные усилители стали меньше, дешевле, надежнее, и сфера их применения расширилась. Первые операционные усилители на транзисторах появились в продаже в 1959 году. Р.Малтер (США) разработал ОУ Р2, включавший семь германиевых транзисторов и варикапный мостик. Требования к увеличению надежности, улучшению характеристик, снижению стоимости и размеров способствовали развитию интегральных микросхем, которые были изобретены в лаборатории фирмы Texas Instruments (США) в 1958 г. Первый интегральный ОУ mА702, имевший рыночный успех, был разработан Р.Уидларом (США) в 1963 году. В настоящее время номенклатура ОУ насчитывает сотни наименований. Операционные усилители выпускаются в малогабаритных корпусах и очень дешевы, что способствует их массовому распространению.
Операционные усилители представляют собой усилители постоянного тока с низкими значениями напряжения смещения нуля и входных токов и с высоким коэффициентом усиления. По размерам и цене они практически не отличаются от отдельного транзистора. В то же время, преобразование сигнала схемой на ОУ почти исключительно определяется свойствами цепей обратных связей усилителя и отличается высокой стабильностью и воспроизводимостью. Кроме того, благодаря практически идеальным характеристикам ОУ реализация различных электронных схем на их основе оказывается значительно проще, чем на отдельных транзисторах. Поэтому операционные усилители почти полностью вытеснили отдельные транзисторы в качестве элементов схем ("кирпичиков") во многих областях аналоговой схемотехники.
На рис.1 дано схемное обозначение операционного усилителя. Входной каскад его выполняется в виде дифференциального усилителя, так что операционный усилитель имеет два входа. В дальнейшем будем, при необходимости, обозначать неинвертирующий вход буквой p (positive - положительный), а инвертирующий - буквой n (negative - отрицательный). Выходное напряжение Uвых находится в одной фазе с разностью входных напряжений:
Uвых = U1 - U2
Рис. 1. Обозначение ОУ
Чтобы обеспечить возможность работы операционного усилителя как с положительными, так и с отрицательными входными сигналами, следует использовать двухполярное питающее напряжение. Для этого нужно предусмотреть два источника постоянного тока, которые, как это показано на рис. 1, подключаются к соответствующим внешним выводам ОУ. Обычно интегральные операционные усилители работают с напряжением питания +/-15 В. В дальнейшем, рассматривая схемы на ОУ, мы, как правило, не будем указывать выводы питания.
Наконец, очень важное обстоятельство: операционный усилитель почти всегда охвачен глубокой отрицательной обратной связью, свойства которой и определяют свойства схемы с ОУ.
Принцип введения отрицательной обратной связи иллюстрируется рис. 2.
Рис. 2. Принцип отрицательной обратной связи
Часть выходного напряжения возвращается через цепь обратной связи ко входу усилителя. Если, как это показано на рис. 2, напряжение обратной связи вычитается из входного напряжения, обратная связь называется отрицательной.
Для физического анализа схемы, представленной на рис. 2, допустим, что входное напряжение изменилось от нуля до некоторого положительного значения Uвх. В первый момент выходное напряжение Uвых, а следовательно, и напряжение обратной связи bUвых также равны нулю. При этом напряжение, приложенное ко входу операционного усилителя, составит Uд = Uвх. Так как это напряжение усиливается усилителем с большим коэффициентом усиления KU, то величина Uвых быстро возрастет до некоторого положительного значения и вместе с ней возрастет также величина bUвых. Это приведет к уменьшению напряжения Uд, приложенного ко входу усилителя. Тот факт, что выходное напряжение воздействует на входное напряжение, причем так, что это влияние направлено в сторону, противоположную изменениям входной величины и есть проявление отрицательной обратной связи. После достижения устойчивого состояния выходное напряжение ОУ
Uвых =KUUд =KU(Uвх - bUвых).
Решив это уравнение относительно Uвых, получим:
K=Uвых /Uвх =KU/(1 + bKU) (1)
При bKU >>1 коэффициент усиления ОУ, охваченного обратной связью составит
K @ 1/b (2)
Таким образом, из этого соотношения следует, что коэффициент усиления ОУ с обратной связью определяется почти исключительно только обратной связью и мало зависит от параметров самого усилителя. В простейшем случае цепь обратной связи представляет собой резистивный делитель напряжения. При этом схема с ОУ работает как линейный усилитель, коэффициент усиления которого определяется только коэффициентом ослабления цепи обратной связи. Если в качестве цепи обратной связи применяется RC-цепь, то образуется активный фильтр. Наконец, включение в цепь обратной связи ОУ диодов и транзисторов позволяет реализовать нелинейные преобразования сигналов с высокой точностью.
Инвертирующий усилитель на ОУ
Схема инвертирующего усилителя приведена на рис. 1.1. Нетрудно увидеть , что за счет резистора R2 в схеме обеспечивается глубокая отрицательная обратная связь. Обратная связь создает особый режим точки А схемы. Операционный усилитель всегда усиливает дифференциальное напряжение Uд , которое приложено непосредственно между инвертирующим и неинвертирующим входами. При этом
Любое изменение входного напряжения приведет к изменению напряжения на выходе, причем выходное напряжение будет изменяться до тех пор, пока за счет влияния отрицательной обратной связи потенциал точки А не станет равным
В современных ОУ , поэтому потенциал точки А можно считать равным нулю, т.е. она является потенциально заземленной (так называемый "виртуальный нуль"). Однако гальванически точка А отделена от "земли", т.к. дифференциальное входное сопротивление ОУ можно считать равным бесконечности
Рисунок 1.1 - Инвертирующий усилитель на ОУ
Учитывая большой дифференциальный коэффициент усиления ОУ и свойства усилителя, охваченного глубокой отрицательной обратной связью, можно предположить, что коэффициент усиления инвертирующего усилителя будет определяться только параметрами цепи обратной связи. Действительно, если принять и пренебречь входными токами смещения, то для точки А по закону Кирхгофа
В свою очередь
С учетом этого можно получить
откуда коэффициент усиления инвертирующего усилителя
Знак минус перед правой частью означает, что выход инвертирован.
Входные токи смещения ОУ чрезвычайно малы, однако при усилении сигналов низкого уровня, к которым относятся и биомедицинские сигналы, токи смещения могут привести к появлению погрешности усиления. Для повышения точности усилителя целесообразно в цепь неинвертирующего входа включать резистор, как показано на рис. 1.2.
Рисунок 1.2
Наличие резисторов одинаковой величины на инвертирующем и неинвертирующем входах при протекании токов смещения вызывает одинаковое падение напряжения, т.е. дифференциальный входной сигнал будет равен нулю. Кроме того, для уменьшения влияния тока смещения сопротивление R2 выбирать не более нескольких сотен килоОм.
Входное сопротивление инвертирующего усилителя (рис. 1.1) равно R1, так как благодаря обратной связи потенциал точки А приблизительно равен нулю . Поэтому сопротивление R1 должно выбираться так, чтобы не нагружать источник входного сигнала, а R2 должно быть достаточно большим, чтобы не нагружать выходную цепь операционного усилителя.
Важнейшими характеристиками ОУ являются амплитудные (передаточные) характеристики (рис. 1.3).
Их представляют в виде двух кривых, относящихся соответственно к инвертирующему и неинвертирующему входам. Характеристики снимают при подаче сигнала на один из входов при нулевом сигнале на другом. Каждая из кривых состоит из горизонтального и наклонного участков.
Рис. 1.3
Горизонтальные участки кривых соответствуют режиму полностью открытого (насыщенного) либо закрытого транзисторов выходного каскада. При изменении входного напряжения на этих участках выходное напряжение усилителя остается постоянным и определяется напряжением +Uвых (max), -Uвых (max). Эти напряжения близки к напряжению источников питания.
Наклонному (линейному) участку кривых соответствует пропорциональная зависимость выходного напряжения от входного. Этот диапазон называется областью усиления.Угол наклона участка определяется коэффициентом усиления ОУ: Kuоу = Uвых / Uвх. Большие значения коэффициента усиления ОУ позволяют при охвате таких усилителей глубокой отрицательной обратной связью получать схемы со свойствами,которые зависят только от параметров цепи отрицательной обратной связи.
Амплитудные характеристики, представленные на (рис. 1.3), проходят через нуль. Состояние, когда Uвых = 0 при Uвх = 0,называется балансом ОУ. Однако для реальных ОУ условие баланса обычно не выполняется (наблюдается разбаланс). При Uвх = 0 выходное напряжение ОУ может быть больше или меньше нуля (Uвых = + Uвых или Uвых = - Uвых).
Дата добавления: 2015-04-07; просмотров: 1219;