Примеси в природном газе
Основными газообразными примесями в природном газе являются азот, углекислота и сероводород; эти газы называются инертными. Гелий относится к примесям, содержащимся в относительно небольших количествах, однако имеет большое практическое значение.
Присутствие в природном газе относительно больших количеств углекислоты и азота снижает его воспламеняемость и тем самым уменьшает его теплотворную способность. Эти же примеси повышают температуру горения природного газа. Предел воспламеняемости пропанового газа достигается при весовом отношении углекислоты к пропану около 8:1, а азота к пропану- около 15:1. Для бутана предел воспламеняемости наступает при достижении весовых отношений примерно 9:1 для углекислоты и 16:1 для азота. Природные газы, содержащие при высоких давлениях столь большое количество углекислоты и азота, что становятся невоспламеняемыми, иногда используются вместо пара в паровых машинах на нефтепромыслах. Негорючие природные газы известны как «воздушные» газы.
Гелий. Гелий (Не) представляет собой легкий, бесцветный, не имеющий запаха, химически инертный элемент [93], в условиях нормального давления и температуры существующий в газообразной фазе. Это один из инертных газов (гелий, неон, аргон, криптон, ксенон и радон). Впервые он был обнаружен в 1868 г. в виде неопознанной желтой линии в спектре Солнца; на Земле в качестве самостоятельного элемента гелий был открыт в 1895 г. Он содержится в атмосфере (5 ч. на млн. по объему), в некоторых урановых минералах и в газах (объемы которых поддаются измерению) некоторых рудников, фумарол и источников минеральных вод; в значительно больших количествах гелий встречается в природных газах, достигая в некоторых из них 8 об. %.
Проблема происхождения столь больших количеств гелия, этого химически инертного элемента, в месторождениях природного газа все еще не решена. Выделение гелия при распаде таких радиоактивных элементов, как уран, радий и торий, приводит к предположению, что первичным источником гелия является радиоактивность. Ионы гелия испускаются в виде положительных частиц с двойным зарядом, ядром которых служат альфа-частицы. Для заданного количества радиоактивного элемента можно рассчитать скорость излучения этих альфа-частиц, что позволяет произвести подсчет количества гелия, образующегося таким способом за определенный промежуток времени. И наоборот, «гелиевым методом» можно измерять геологический (абсолютный) возраст пород. Скорость выделения гелия различными радиоактивными элементами приводится в табл. 5-21. Взяв за основу величину среднего содержания радиоактивных веществ в породах земной коры, Роджерс подсчитал, что ежегодно
Таблица 5-21
Скорость выделения гелия различными радиоактивными элементами
в них образуется от 282 до 1060 млн. куб. футов гелия [94]. Как показал Уэлс, при умеренных температурах ‑ от 200 до 500°С ‑ проницаемость богатых кремнеземом изверженных пород для гелия значительно выше, чем для других газов [95]. Отсюда следует, что большая часть содержащегося в осадках гелия, вероятно, образовалась в результате радиоактивного распада в изверженных породах, залегающих на небольших глубинах под гелиеносными осадочными толщами. Примечательно, что радиоактивные эманации очень хорошо растворяются в нефтях. Бойль [96] установил, что растворимость эманации радия в очищенной нефти в 50 раз выше, чем в воде; гелий же, будучи нерастворим в нефтях, мог выделяться из них, причем его улетучивание, видимо, происходит почти с той же скоростью, что и образование.
Поскольку нет убедительных доказательств, что весь гелий образовался в результате распада радиоактивных веществ, многие исследователи считают, что значительные количества его, известные в земной коре, имеют изначальное происхождение. В газах, содержащих гелий, обычной акцессорной примесью является также азот; происхождение высоких содержаний азота в гелиеносных природных газах, так же как и происхождение самого гелия, можно рассматривать как изначальное (об азоте см. ниже).
Единственной страной, имевшей месторождения природного газа с содержанием гелия, рентабельным для промышленной утилизации, до сих пор были Соединенные Штаты Америки. Содержание гелия в этих месторождениях колеблется в пределах 1-8 об. % [97]. Возможно, однако, что залежи гелиеносных газов открыты в настоящее время и в других странах.
Гелиеносный газ, обнаруженный в породах формации Урей (миссисипий и девон) на нефтегазовом месторождении Раттлснейк, Нью-Мексико, отличается необычно высоким содержанием азота [98]. Данные анализа показали следующий состав этого газа (в %):
Азот. Азот (N2) - бесцветный, не обладающий вкусом и запахом газ, составляющий 78% сухого воздуха. Он входит в состав природного газа в количестве до 99 об. % и рудничного газа, который иногда нацело состоит из азота. Азот отмечается среди изверженных пород, в газах минеральных источников и гейзеров, в фумарольиых газах; кроме того, он растворен в морской и пресной воде, а также в пластовых водах. Имеются по крайней мере два возможных источника, откуда азот мог поступить в природный газ. Высокое процентное содержание азота в атмосфере и общая химическая инертность этого элемента позволяют считать, что азот, входящий в состав природного газа, улавливался осадками из воздуха в процессе седиментации. Дополнительными источниками этого газа, вероятно, служили извержения и разложение содержащих азот органических соединений. Отсутствие же в природном газе кислорода, видимо, связано с его удалением в результате окисления минералов осадочных пород. На существование второго источника азота указывает высокое содержание этого элемента в газах, обогащенных гелием. Весьма вероятно, что в таких случаях и азот, и гелий имеют общее происхождение. Например, Гослин [99] установил, что при добавлении радия в сосуд, где находятся вода, рыбы, водные растения и почва, наблюдается быстрое выделение азота из животных и растительных белков. Высокое содержание свободного азота в природных газах не определяется количеством химически связанного азота, "входящего в состав нефти и других нафтидов данной залежи. Богатые азотом газы встречаются совместно с нефтями, бедными азотистыми соединениями, и наоборот.
Значительные примеси азота весьма обычны для многих газовых залежей регионов Мид-Континента и Скалистых гор, где его содержание колеблется от 5-10 почти до 100% . Например, газ из месторождения Уэстбрук в округе Митчелл, Техас, на 85-95% состоит из азота. Но поскольку содержание азота в атмосфере достаточно велико, практическое использование этого газа из залежей крайне ограничено.
Углекислый газ. Углекислый газ (СО2) - бесцветный, не горючий, не обладающий запахом газ, в полтора раза тяжелее воздуха. Он легко растворим в воде; при нормальных температуре и давлении в единице объема воды растворяется такой же объем углекислого газа. В условиях земной поверхности углекислый газ инертен, при концентрации его свыше 8% он токсичен и вызывает обморочное состояние. В природе углекислый газ образуется при воздействии кислот на карбонаты и бикарбонаты, входящие в состав изверженных, осадочных и метаморфических пород; при окислении углеводородов на контакте их с минерализованными водами; при нагревании карбонатов и бикарбонатов, а также под влиянием определенных видов анаэробных бактерий, разлагающих углеводороды. В количестве 0,03 об. % углекислый газ входит в состав атмосферного воздуха. Различные количества его отмечаются во всех типах изверженных, метаморфических и осадочных пород. Огромные объемы углекислого газа поступают в атмосферу с вулканическими эманациями. В растворенном виде он присутствует в пресной и океанической воде, а также в водах минеральных источников. Залежи природного газа, обогащенного углекислым газом, распространены по преимуществу в западных штатах - Монтане, Колорадо, Юте и Нью-Мексико,- а на месторождении Норт-Парк в Колорадо углекислый газ получают из скважин вместе с нефтью. Некоторые залежи природного газа в Калифорнии содержат до 49% углекислого газа. Наивысшие известные его концентрации отмечаются в залежах Нью-Мексико, где углекислый газ составляет в некоторых случаях 99% и более всего объема газа в залежи. Некоторые скважины здесь могут дать от 12 до 26 млн. куб. футов углекислого газа.
Полагают, что крупные залежи углекислого газа в штате Нью-Мексико и в Мексике образовались в результате вулканических эманации, а частично и в результате выделения углекислого газа при термическом воздействии изверженных пород на контакте их с известняками; подобное же выделение углекислого газа происходит в печах для обжига извести. Огромное большинство залежей Нью-Мексико, обогащенных углекислым газом, находится на расстоянии не свыше нескольких миль от районов, характеризовавшихся в недавнем прошлом высокой вулканической активностью [100]. Причину высокого содержания углекислого газа в некоторых залежах Калифорнии усматривают в окислении углеводородов при их контактировании с минерализованными водами [101].
Интересно отметить, что когда скважина дает углекислый газ, то внезапное расширение его в стволе вызывает резкое охлаждение труб, бурового инструмента и оборудования на устье до очень низких температур. Например, на месторождении Мак-Каллем в округе Джэксон, Колорадо, в составе газа которого содержится 92% углекислого газа, трубы и резервуары даже в самый жаркий день покрываются толстым слоем льда или снега [102].
Ниже приводится анализ попутного газа (в %) получаемого вместе с нефтью из песчаников Тенслип (пенсильваний) на месторождении Уэрц-Дом в Вайоминге:
Теплотворная способность этого газа ‑ 677 британских тепловых единиц, он добывается вместе с нефтью, которая обладает плотностью 35,3°API, и содержит 1,33% серы. Обычно же теплотворная способность природного газа в среднем составляет 1075 британских тепловых единиц на 1000 куб. футов.
Сероводород. Сероводород (H2S) ‑ бесцветный газ с характерным неприятным запахом; хорошо растворим в воде и, как правило, еще лучше в углеводородах. В единице объема воды при 0°С и давлении 1 атм растворяется 4,3 таких же объемных единиц сероводорода. Сероводород, как в виде свободного газа, так и будучи растворенным в нефти или пластовой воде, является активным агентом коррозии металлов. Он токсичен даже в небольших концентрациях: содержание 0,005% этого газа вызывает довольно острое отравление при воздействии на дыхательные пути в течение длительного времени, концентрации в 0,06-0,08% в опытах с собаками вызывали немедленное их отравление (прекращалось дыхание, сердце переставало работать и наступала смерть) [103]. Природные газы, содержащие даже небольшое количество сероводорода, непригодны для сжигания в местах, где присутствует человек. В связи с этим в ряде штатов приняты законы, по которым запрещается употребление газа, не очищенного от сероводорода, если содержание последнего превышает 20-30 гран на 100 куб.футов газа [104]. При добыче природного газа, нефти или пластовой воды, обогащенных сероводородом, возникают следующие проблемы: 1) обеспечение безопасности людей, 2) предохранение оборудования от коррозии и 3) обработка нефти или газа в целях удаления сероводорода.
Хотя сероводород выделяется при вулканических извержениях, присутствует в газах некоторых минеральных источников и образуется при разложении органического вещества растительного или животного происхождения, можно полагать, что тот сероводород, который входит в состав природного газа и растворен в нефти, образовывался органическим или неорганическим путем при восстановлении сульфатов до сульфидов. В солоноватоводных и застойных водоемах, в которых не содержится растворенного кислорода, бактерии воздействуют на соли, имеющие в своем составе химически связанный кислород, в том числе и на сульфаты, входящие в органическое вещество, извлеченные из выветрелых минералов или растворенные в воде. Из илов солоноватоводных озер были выделены различные микроорганизмы, способные образовывать сероводород при восстановлении сульфатов до сульфидов. Сульфат-редуцирующие бактерии обнаружены также в растительном перегное, буровом растворе, в придонных водах внутренних морей, в озерных осадках, в кернах неглубоких скважин и в воде некоторых скважин, дающих нефть. Для развития подобных бактерий наиболее благоприятны температуры от 25 до 50°С.
Механизм образования сероводорода неорганическим путем в результате восстановления сульфатов можно представить уравнением
2C + MeSО4 + H2О → MeCО3 + CО2 + H2S,
где Me ‑ металл, а С ‑ углерод, входящий в состав органического вещества. По вопросу о том, какой из двух способов образования сероводорода ‑ органический или неорганический ‑ преобладает, развернулась широкая дискуссия. Однако в настоящее время большинство исследователей склонно считать, что основным все же является бактериальный путь.
Природный газ, содержащий значительное количество сероводорода, обнаружен во многих районах [105]; наиболее известные среди них: район Панхандл в Техасе; западный Техас; юго-восток Нью-Мексико (где газовые залежи приурочены к пермским и пенсильванским отложениям); район Тампико-Такспан в Мексике (где с высоким содержанием H2S и СО2 в газе связано много несчастных случаев); соляные купола провинции Галф-Кост в Техасе и Луизиане и нефтяные месторождения Ирана. Присутствие в разрезах провинции Галф-Кост и Ирана большого количества гипсов указывает на образование сероводорода в результате восстановления сульфатов под влиянием битуминозных веществ.
Исключительно высокое содержание сероводорода в природном газе обнаружено в восточном Техасе, Арканзасе и Вайоминге. Приводим данные анализов (в %) подобного газа, полученного близ Эмори в северо-восточном Техасе [106].
Теплотворная способность этого газа 956 британских тепловых единиц на 1000 куб. футов. Его удельный вес по воздуху 0,973. При промышленной переработке из 1 млн. куб. футов газа может быть получено 15 т серы.
Газ, растворенный в нефти, которая добывается из эоценовых мергелей на месторождении Месджеде-Солейман в Иране, содержит 40% сероводорода [107].
Заключение
В заключение следует еще раз подчеркнуть следующие наиболее существенные особенности пластовых флюидов:
1. Химические и физические свойства каждого из присутствующих пластовых флюидов ‑ воды, нефти и газа ‑ широко варьируют.
2. Химические и физические свойства флюидов, а также их относительное содержание в пласте оказывают существенное влияние на миграцию и аккумуляцию в залежи нефти и газа, а выявление этих характеристик имеет большое значение для эффективной эксплуатации нефтяных и газовых залежей.
3. При эксплуатации залежей обычно стремятся получить наиболее важные данные, касающиеся пластовых флюидов. Для вод нефтяных месторождений эти данные включают водонасыщенность, дебит, концентрацию растворенных солей и химический состав; для нефти – нефтенасыщенность пласта, суточный дебит на единицу падения пластового давления, химический состав, плотность и вязкость; для природного газа - объем, дебит на единицу падения пластового давления, содержание конденсата, присутствие примесей и содержание серы.
Цитированная литература
1. Gran done P., Cook А.В., Collecting and Examining Subsurface Samples of Petroleum, Tech. Paper 629, U.S. Bur. Mines, 67 p., 1941.
2. Pyle H.C, Sherborne J.E., Core Analysis, Tech. Publ. 1024, Petrol. Technol., 1939; Trans. Am. Inst. Min. Met. Engrs., 132, pp. 33-61, 1939.
Pollard T.A., Reichertz P.P., Core-Analysis Practices - Basic Methods and New Developments, Bull. Am. Assoc. Petrol. Geol., 36, pp. 230-252, 1952.
3. Lidd1e R.A., The Van Oil Field, Van Zandt County, Texas, Bull. 3601, Univ. of Texas, 82 p., 1936.
4. Cupps С.Q., Lipstate Ph.H., Jr., Fry J., Variance in Characteristics of the Oil in the Weber Sandstone Reservoir, Rangely Field, Colorado, RI 4761, U.S. Bur. Mines, 68 p., 1951.
Espach R.H., Fry J., Variable Characteristics of the Oil in the Tensleep Sandstone Reservoir, Elk Basin Field, Wyoming and Montana, RI 4768, U.S. Bur. Mines, 24 p., 1951.
5 Case L.С. et al., Selected Annotated Bibliography on Oil-Field Waters, Bull. Am. Assoc. Petrol. Geol., 26, pp. 865-881, 1942.
6 Wasson Th.,Wasson I.B., Cabin Creek Field, West Virginia, Bull. Am. Assoc. Petrol. Geol., 11, pp. 705-719, 1927.
7 Reger D.B., The Copley Oil Pool of West Virginia, Bull. Am. Assoc. Petrol. Geol., 11, pp. 581-599, 1927.
8. Davis R. E., Stephenson E. A., Synclinal Oil Fields in Southern West Virginia, Structure of Typical Am. Oil Fields, Am. Assoc. Petrol. Geol., Tulsa, Okla., 2, pp. 571-576, 1929. 9 Crawford J.C, Waters of Producing Fields in the Rocky Mountain Region, Tech. Pub. 2383, Trans. Am. Inst. Min. Met. Engrs., 179, pp. 264-285, 1949. 10 Case L. C, The Contrast in Initial and Present Application of the Term'Connate, Water, Journ. Petrol. Technol., 8, № 4, p. 12, 1956.
11. Fettke Ch.R., Core Studies of the Second Sand of the Venango Group from Oil City, Pa., Trans. Am. Inst. Min. Met. Engrs., pp. 219-230, 1927. (Фетке был первым, кто еще в 1926 г. отметил, что нефтеносные песчаники первоначально не были насыщены нефтью, но содержали значительное количество воды.)
12. Вruсе W.A., Welge H.L, The Restored-state Method for Determination of Oil in Place and Connate Water, in Production Practice and Technology, Am. Petrol. Inst., pp. 166-174, 1947.
13. Trask P.D., Compaction of Sediments, Bull. Am. Assoc. Petrol. Geol., 15, pp. 271-276, 1931.
14. Rail С.G., Taliaferro D.В., A Method for Determining Simultaneously the Oil and Water Saturations of Oil Sands, RI 4004, U.S. Bur. Mines, 16 p., 1946. Сaran J.G., Core Analysis - an Aid to Profitable Completions, Mines Magazine, pp. 19-24, 1947.
15. Pollard T.A., Reichertz P. P., op. cit. (note 2). (Рассмотрено несколько методов определения водонасыщенности пород-коллекторов.)
Дата добавления: 2015-06-10; просмотров: 4260;