Другие компоненты нефтей
Асфальтово-смолистые вещества. Эти вещества представляют собой черной или коричневой окраски твердые или полутвердые смеси неуглеводородных соединений [содержащих, помимо С и Н, также гетероэлементы ‑ О, S, N], характеризующихся высокими температурами кипения и большими молекулярными весами; они известны как природные образования, а также как тяжелые остатки некоторых нефтей после их переработки. Наряду с поддающимися определению количествами серы, кислорода и азота в асфальтово-смолистых веществах содержатся химически инертные компоненты.
Асфальты тесно ассоциируются с нафтенами (циклопарафинами) (см. стр. 179, 180: глава 5, нафтеновый ряд).
Сера. В некотором количестве (0,1-5,5 вес.%) сера встречается практически во всех нефтях [56] и в каждой входящей в состав нефти фракции. Она может присутствовать в любой или в нескольких из следующих форм: 1) свободная сера; 2) сероводород (H2S); 3) органические сернистые соединения, такие, как тиолы, или меркаптаны, содержащие группу SH (например, пропантиол, или пропил-меркаптан C3H8S) и дисульфиды, содержащие S2 (например, 2,3-дитиабутан C2H6S2). Много сернистых органических соединений (sulfur hydrocarbons) содержится в крекинг-дистиллятах, однако не известно, образуются ли они в процессе высокотемпературной перегонки или первоначально присутствовали в нефти. Из нефти не было выделено ни одного сернистого соединения, имеющего в молекуле более одного атома серы, за исключением дисульфидов. Сернистые органические соединения образуют полярные вещества, оказывающие сильное влияние на поверхностное натяжение на границе раздела фаз (см. стр. 414-416: глава 10, поверхностное натяжение).
Присутствие серы и сернистых соединений в бензине вызывает коррозию металла, обусловливает неприятный запах и плохую вспышку. До разработки современной технологии крекинг-процессов присутствие серы в товарных нефтепродуктах снижало их качество и соответственно их продажную цену. Поскольку в настоящее время сера может быть удалена из нефти, разница в ценах на сернистую и бессернистую нефти в значительной мере сглажена и они стоят почти одинаково.
Нефти с высоким удельным весом, или с низкими значениями плотности в градусах API (American Petroleum Institute), обычно содержат серы больше, чем менее плотные нефти. Содержание серы в нефтях колеблется в широких пределах: от 0,07 или 0,08% в тяжелых нефтях Пенсильвании до 3-5% в некоторых тяжелых нефтях Мексики. Асфальты и другие нафтиды во многих выходах на поверхность, а также горючие сланцы отличаются высоким содержанием серы. Тяжелые нефти из поверхностных нефтепроявлений в Мексике, носящих местное название «чапопотес» (chapopotes) содержат от 6,15 до 10,75% серы. Нефти с содержанием серы менее 0,5% называются «малосернистыми», а более 0,5% ‑ «высокосернистыми»; 42% нефти, добытой в США в
¹Это название дано по фамилии немецкого химика Фридриха Августа Кекуле, который впервые изобразил молекулу бензола в виде группы мелких шариков (атомов), связанных между собой стержнями.
1946 г., относилось к малосернистым, а 58% ‑ к высокосернистым нефтям [57].
Содержание серы в нефтях может широко варьировать даже в пределах одного нефтегазоносного бассейна. Кроме того, содержание серы в каждой фракции меняется в различных типах нефти. Так, бензины из нефтей западного Техаса имеют высокое содержание серы, в то время как бензины из других высокосернистых нефтей, например нефтей Среднего Востока, содержат серы очень мало, поскольку она концентрируется в тяжелом остатке после отгона легких фракций. Как было установлено, например в Вайоминге, высокосернистые нефти с низким содержанием бензина и ароматически-нафтеновым основанием ассоциируются, очевидно, с известняковыми и доломитовыми коллекторами, а малосернистые нефти с высоким содержанием бензина и парафиновым основанием приурочиваются к песчаным коллекторам [58]. Приблизительное среднее содержание серы в нефтях различной плотности показано на фиг. 5-23. Приведенная диаграмма свидетельствует об общем увеличении содержания серы в нефтях с понижением их плотности в единицах API (т.е. с возрастанием удельного веса нефтей).
Фиг. 5-23. Изменение содержания серы в нефтях в зависимости от их плотности в градусах API (Nelson, О. and G. Journ., p. 118, 1953).
l - западный Техас; 2 - Миссисипи; 3 - Венесуэла; 4 - Средний Восток; 5 - Калифорния; 6 - месторождение Ист-Тексас; 7 - типичная нефть из месторождений побережья Техаса.
Азот. Почти все нефти имеют в своем составе небольшое количество азота. О природе азотистых соединений, содержащихся в непереработанных нефтях, ничего не известно, однако азотистые соединения в дистиллятах принадлежат часто к таким основным их типам, как пиридины (C5H5N) и хинолины (C9H7N). Поскольку азот является обычным инертным компонентом природного газа, возможно, что содержание его в нефтях объясняется присутствием в них растворенных газов. Азот ‑ нежелательный компонент как нефти, так и природного газа. Около ¹/5 части всех нефтей Америки классифицируются как высокоазотистые и содержат более 0,25% азота, а средневзвешенное содержание азота во всех нефтях США составляет 0,148% [59]. Наиболее высокое содержание азота известно в некоторых нефтях Калифорнии, где оно достигает максимально 0,82% [60].
Кислород. Кислород обычно составляет в среднем 2% от веса нефтей (при колебании от 0,1 до 4,0%) и присутствует в них в следующих формах [61]:
1. Свободный кислород.
2. Фенолы (С6Н5ОН).
3. Жирные кислоты и их производные [G6H5О6(R)]¹.
4. Нафтеновые кислоты, имеющие общую формулу CnH2n-1(СООН). Органические (нафтеновые) кислоты образуются в результате добавления к нафтеновым углеводородам карбоксильной группы. Карбоксильная группа характеризуется формулой и обладает свойствами слабой кислоты.
5. Смолистые и асфальтовые вещества. Предполагается, что они образуются частично в результате окисления и полимеризации определенных углеводородов, входящих в состав нефти. Например, в беспарафиновых нефтях Грозненского района [62] присутствует 8,2% естественных смол с удельным весом 1,04, имеющих эмпирическую формулу С41Н57О2 и молекулярный вес 589.
Асфальтены в отличие от смол представляют собой коллоидные растворы, правда высокодисперсные и устойчивые. Они нерастворимы в лигроинах, но растворяются в бензоле и хлороформе; при нагревании они не плавятся, а вспучиваются и разлагаются, превращаясь в коксоподобное вещество. Их молекулярные веса, очевидно, имеют величину порядка нескольких тысяч единиц, а их химический состав и молекулярная структура отличаются неопределенностью. Согласно анализам, они обнаруживают приблизительно следующий состав: С = 85,2%; Н = 7,4%; S = 0,7% и О = 6,7%. Асфальтены являются главными составными частями таких твердых битумов, как гильсонит и «блестящая смола» (glance pitch) [принадлежащих к асфальтитам].
Примеси. Нефть содержит обычно мельчайшие количества самых разнообразных примесей как органических, так и неорганических. По данным изучения под микроскопом материал органического происхождения включает такие устойчивые образования, как кремнистые скелетные остатки, окаменелые обломки древесины, споры, спикулы, кутикулу, смолы, обломки угля и лигнита, водоросли, одноклеточные организмы, оболочки спор, чешуйки насекомых, волоски [63].
Неорганические вещества можно наблюдать в зольном остатке нефтей. В нефтях из 113 залежей Западной Виргинии [64] количество зольного остатка варьирует от 0,04 до 400 ч. на млн. (0,04-10-4% ‑ 0,04%), но в большинстве случаев колеблется в пределах между 1 и 10 ч. на млн. (1-10-4% ‑ 1-10-3%). Содержание зольного остатка в нефтях Мексики, Южной Америки и Среднего Востока изменяется от 0,003 до 0,72% [65].
К химическим элементам, присутствие которых установлено в зольном остатке нефтей, относятся кремний, железо, алюминий, кальций, магний, медь, свинец, олово, мышьяк, сурьма, цинк, серебро, никель, хром, молибден и ванадий [66]. Большая часть этих элементов содержится в морской воде и могла попасть в нефть именно оттуда либо в виде соединений, находящихся в состоянии коллоидной суспензии, либо в составе веществ, выделяемых водорослями и другими морскими организмами, которые сами могли также служить исходным материалом для образования нефти. Известно, что ванадий и никель концентрируются в порфиринах и замещают магний в хлорофилле, в результате чего содержание этих элементов в нефти в несколько тысяч раз превосходит их концентрацию в земной коре. Ванадий и никель используются для корреляции нефтей [66]. Иногда вместе с нефтью на поверхность выносятся глинистые минералы. Они осаждаются из сопутствующей нефти воды, что указывает скорее на их связь с этой водой, чем с нефтью.
¹R означает любой радикал алкильной группы, например метил (СН3-), этил .СН3СН2-), пропил (СН3СН2СН2-) и т.д.
Таблица 5-8
Состав (в молевых фракциях) типичных газов и нефтей в природных резервуарах¹
Типы пластовых углеводородов | Сухой газ | Газ высокого высокого | Нефть высокого давления | Нефть низкого давления |
Метан | 0,91 | 0,72 | 0,56 | 0,14 |
Этан | 0,05 | 0,08 | 0,06 | 0,08 |
Пропан | 0,03 | 0,05 | 0,06 | 0,08 |
Бутаны | 0,01 | 0,04 | 0,05 | 0,08 |
Пентаны | Следы | 0,02 | 0,04 | 0,05 |
Гексаны | Следы | 0,02 | 0,03 | 0,05 |
Гептаны плюс более высокие | — | 0,07 | 0,20 | 0,53 |
¹D.А. Кat, B.Williams, Reservoir fluids and their behavior, Bull. Am. Assoc. Petrol. Geol., 36, p. 345, tabl. 1, 1952.
Таблица 5-9 Состав нефти из месторождения Брадфорд, Пенсильвания¹
Компоненты | Вес.% отвеса нефти | Компоненты | Вес. % от веса нефти |
Воздух | 0,1 | Диметилсульфид | 0,006 |
Метан | 0,0001 | Метилэтилсульфид | 0,003 |
Этан | 0,11 | Диэтилсульфид | 0,012 |
Пропан | 0,73 | Этил-к-пропилсульфид | 0,012 |
н- Бутан | 1,71 | Ди-и-пропилсульфид | 0,009 |
Изобутан | 0,58 | Ди-к-бутилсульфид | 0,009 |
н-Пентан | 0,85 | С9-парафины и нафтены, кипящие | 11,5 |
Изопентан | 2,18 | в интервале до 225°С | |
Гексаны | 3,40 | С8-ароматические углеводороды, | 1,84 |
Гептаны | 3,37 | кипящие в интервале | |
Октаны | 3,04 | до 225°С | |
Нонаны | 2,69 | Кислородно-азотисто-сернистые | 0,788 |
Циклопентан | 0,049 | соединения, кипящие | |
Метилциклопентан | 0,349 | в интервале 40-225°С | |
Циклогексан | 0,518 | Фракции, кипящие в интервале | 29,9 |
Диметилциклопентаны | 0,587 | от 225° С/740 мм до | |
Метилциклогексан | 1,55 | 280° С/40 мм | |
Этилциклогексан | 0,36 | Компоненты с высокими молекулярными весами: | |
С8-нафтены | 2,07 | ||
С9-нафтены | 1,68 | средний молекулярный вес 340 | 3,8 |
Бензол | 0,0389 | » » » 380 | 2,9 |
Толуол | 0,572 | » » » 410 | 3,3 |
Этилбензол | 0,0398 | » » » 460 | 3,6 |
О-Ксилол | 0,1426 | » » » 550 | 3,6 |
м-Ксилол | 0,580 | » » » 890 | 9,0 |
n- Ксилол | 0,176 | Потери и неучтенные вещества | 2,3 |
Итого | ~100,00 |
¹J. Feldman, L. Scarpino, G. Pentazopolos, М. Оrchin (Synthetic Fuels Research, U.S. Bur. of Mines, Bruceton, Pa.), Composition of Crude Oil from the Bradford Field, Pensilvania, Prod. Monthly, 16, № 6, pp. 14-16, 1952.
Таблица 5-10 Типичный анализ нефти по методу Гемпела, принятому в Горном бюро США
Перегонка по методу Гемпела, Горное бюро США
Перегонка при давлении 588 мм рт. ст., первая капля при 25°С (77°F)
Содержание углеродистого остатка в остатке от перегонки ‑ 15,6°о, в нефти ‑ 5,1%
Во многих нафтидах присутствует уран, а продукты его радиоактивного распада обнаруживаются в различных природных газах и буровых водах. Фактически большинство урановых залежей ассоциируется с наличием углистого материала или заключает в себе некоторое количество его; вероятно, этот материал каким-то образом способствует осаждению урана. Как уран попадает в нафтиды, пока не известно. Он может транспортироваться мигрирующими нефтью и газами или попадать в них из радиоактивных осадков; он мог концентрироваться растительным веществом, которое впоследствии послужило исходным материалом для образования углеводородов [67].
Большинство нефтей содержит хлористый натрий, концентрация которого измеряется в фунтах на тысячу баррелей [68]. Когда содержание хлористого натрия в нефти превышает 15-25 фунтов на 1000 баррелей, требуется ее обессоливание. Избыток соли (более 0,7 или 0, 8%) действует подобно избытку серы, корродируя оборудование. Некоторое количество соли
Фиг. 5-24. Кривые индекса корреляции (ИК) [«структурный индекс», по терминологии О.А. Радченко] некоторых типичных нефтей США (Wenger, Lanum, Petrol. Engrs., p. A-69, Figs. 4, 5, 1952).
1 ‑ Спиндлтоп, Техас (третичные отложения); 2 ‑ Ист-Тексас ‑ Килгор (мел); 3 ‑ Лейнс-Крик, Вайоминг (юра); 4 ‑ Солт-Крик, Вайоминг (пенсильваний); 5 ‑ Брадфорд, Пенсильвания (девон).
присутствует в виде кристаллов в нефти, другая часть растворена в пластовой воде, которая обычно извлекается вместе с нефтью, возможно частично в виде эмульсии.
Состав типичных пластовых углеводородных флюидов приведен в табл. 5-8.
Произведено несколько анализов компонентного состава различных нефтей. Состав одной из нефтей месторождения Брадфорд в Пенсильвании приведен в табл. 5-9. Это один из подробнейших опубликованных анализов, но даже в нем более 58% соединений сведены в группы, имеющие высокий молекулярный вес; они включают большинство из почти не ограниченного числа отдельных соединений, вероятно присутствующих в средней нефти.
Анализы нефтей обычно производятся по методу Гемпела, принятому Горным бюро США (табл. 5-10). Этот метод заключается в перегонке 300 мл нефти в определенных тщательно соблюдаемых условиях. Перегонка (дистилляция) начинается при атмосферном давлении (760 мм ртутного столба) и температуре 25°С (77°F). Затем температура постепенно повышается без изменения давления, и через интервалы в 25°С или 45°F отделяются десять фракций, или погонов. После этого давление в дистилляционной установке снижается до 40 мм ртутного столба, и перегонка продолжается до получения еще пяти фракций с интервалом в 25°С. Конечная температура перегонки достигает 300°С. В литературе можно найти большое количество анализов нефтей [69]. По сравнению с технически сложными методами хроматографического и инфракрасного анализа, проведение которых необходимо для определения товарных качеств нефтей с точки зрения возможных результатов их переработки, широко используемый анализ по методу Гемпела является более простым и дешевым, поскольку он характеризует нефть в целом. [Для лабораторий геологоразведочных организаций коллективом авторов ‑ научных сотрудников ВНИГРИ и ВНИГНИ ‑ составлено специальное «Руководство по анализу нефтей» («Недра», Л., 1966).]
Индекс корреляции (ИК) [70]. Этот индекс является удобным способом классификации нефтей по качественному признаку. Он представляет собой число, которое указывает на определенные свойства фракций, получаемых в результате перегонки нефти. Парафины характеризуются ИК, равным 0, а ИК бензола равен 100. Чем ниже значение ИК анализируемой фракции, тем выше в ней концентрация парафиновых углеводородов; чем выше значение ИК, тем больше содержание во фракции нафтеновых и ароматических углеводородов. Кривая ИК может быть построена путем нанесения на диаграмму значений индекса корреляции для пятнадцати анализируемых фракций (см. табл. 5-10). Одна из таких кривых может быть сравнена с подобными кривыми, характеризующими другие нефти, и тогда легко представить соотношение между нефтями различного типа или между нефтями различных продуктивных горизонтов. Диаграмма, состоящая из нескольких кривых индекса корреляции некоторых нефтей США, приведена на фиг. 5-24. [В СССР впервые индекс корреляции нефтей по методу Г.М. Смита был использован Г.А. Амосовым (1951), несколько изменившим формулу:
ИК = 474,5d²°4 + 49350/Табс ‑ 456,8.
Этот индекс впоследствии весьма широко был использован О.А. Радченко под названием «структурного индекса». В ее монографии «Геохимические закономерности размещения нефтеносных областей мира» («Недра», Л., 1965) приведены номограммы Г.А. Амосова и таблицы для определения ИК (структурных индексов) в зависимости от уд. веса фракций.
Дата добавления: 2015-06-10; просмотров: 1157;