Термоэлектрические явления и их применение

Согласно второму закону Вольта, в замкнутой цепи, состоящей из нескольких металлов, находящихся при одинаковой температуре, э.д.с. не возникает, т. е. не происходит возбуждения электрического тока. Однако если температура контактов не одинакова, то в цепи возникает электрический ток, называемый термоэлектрическим. Явление возбуждения термоэлектрического тока (явление Зеебека), а также тесно связанные с ним явления Пельтье и Томсона называются термоэлектрическими явлениями.

 

1. Явление Зеебека (1821). Немецкий физик Т. Зеебек (1770—1831) обнаружил, что в замкнутой цепи, состоящей из последовательно соединенных разнородных проводников, контакты между которыми имеют различную температуру, возникает электрический ток.

Рассмотрим замкнутую цепь, состоящую из двух металлических проводников 1 и 2 с температурами спаев Т1 (контакт А) и Т2 (контакт В), причем Т1 > Т2 (рис. 5.2).

Не вдаваясь в подробности, отметим, что в замкнутой цепи для многих пар металлов (например, Сu—Bi, Ag—Сu, Аu—Сu) электродвижущая сила прямо пропорциональна разности температур в контактах:

Эта э.д.с. называется термоэлектродвижущей силой. Направление тока при Т1 > Т2 на рис. 331 показано стрелкой. Термоэлектродвижущая сила, например для пары металлов медь — константан, для разности температур 100 К составляет всего 4,25 мВ.

Причина возникновения термоэлектродвижущей э.д.с. ясна уже из формулы (2), определяющей внутреннюю контактную разность потенциалов на границе двух металлов. Дело в том, что положение уровня Ферми зависит от температуры. Поэтому если температуры контактов разные, то разными будут и внутренние контактные разности потенциалов. Таким образом, сумма скачков потенциала отлична от нуля, что и приводит к возникновению термоэлектрического тока. Отметим также, что при градиенте температуры происходит и диффузия электронов, которая тоже обусловливает термо-э.д.с.

Явление Зеебека не противоречит второму началу термодинамики, так как в данном случае внутренняя энергия преобразуется в электрическую, для чего используется два источника теплоты (два контакта). Следовательно, для поддержания постоянного тока в рассматриваемой цепи необходимо поддерживать постоянство разности температур контактов: к более нагретому контакту непрерывно подводить теплоту, а от холодного — непрерывно ее отводить.

Явление Зеебека используется для измерения температуры. Для этого применяются термоэлементы, или термопары — датчики температур, состоящие из двух соединенных между собой разнородных металлических проводников. Если контакты (обычно спаи) проводников (проволок), образующих термопару, находятся при разных температурах, то в цепи возникает термоэлектродвижущая сила, которая зависит от разности температур контактов и природы применяемых материалов. Чувствительность термопар выше, если их соединять последовательно. Эти соединения называются термобатареями (или тремостолбиками). Термопары применяются как для измерения ничтожно малых разностей температур, так и для измерения очень высоких и очень низких температур (например, внутри доменных печей или жидких газов). Точность определения температуры с помощью термопар составляет, как правило, несколько кельвин, а у некоторых термопар достигает 0,01 К. Термопары обладают рядом преимуществ перед обычными термометрами: имеют большую чувствительность и малую инерционность, позволяют проводить измерения в широком интервале температур и допускают дистанционные измерения.

Явление Зеебека в принципе может быть использовано для генерации электрического тока. Так, уже сейчас к.п.д. полупроводниковых термобатарей достигает ≈18%. Следовательно, совершенствуя полупроводниковые термоэлектрогенераторы, можно добиться эффективного прямого преобразования солнечной энергии в электрическую.

 

2. Явление Пельтье (1834). Французский физик Ж. Пельтье (1785—1848) обнаружил, что при прохождении через контакт двух различных проводников электрического тока в зависимости от его направления помимо джоулевой теплоты выделяется или поглощается дополнительная теплота. Таким образом, явление Пельтье является обратным по отношению к явлению Зеебека. В отличие от джоулевой теплоты, которая пропорциональна квадрату силы тока, теплота Пельтье пропорциональна первой степени силы тока и меняет знак при изменении направления тока. Рассмотрим замкнутую цепь, состоящую из двух разнородных металлических проводников 1 и 2 (рис. 332), по которым пропускается ток I' (его направление в данном случае выбрано совпадающим с направлением термотока (на рис. 331 при условии Т1> Т2)). Согласно наблюдениям Пельтье, спай А, который при явлении Зеебека поддерживался бы при более высокой температуре, будет теперь охлаждаться, а спай В — нагреваться. При изменении направления тока I' спай А будет нагреваться, спай В — охлаждаться.

Объяснить явление Пельтье можно следующим образом. Электроны по разную сторону спая обладают различной средней энергией (полной — кинетической плюс потенциальной). Если электроны (направление их движения задано на рис. 5.2 пунктирными стрелками) пройдут через спай В и попадут в область с меньшей энергией, то избыток своей энергии они отдадут кристаллической решетке и спай будет нагреваться. В спае А электроны переходят в область с большей энергией, забирая теперь недостающую энергию у кристаллической решетки, и спай будет охлаждаться.

Явление Пельтье используется в термоэлектрических полупроводниковых холодильниках, созданных впервые в 1954 г. под руководством А. Ф. Иоффе, и в некоторых электронных приборах.

 

3. Явление Томсона (1856). Вильям Томсон (Кельвин), исследуя термоэлектрические явления, пришел к заключению, подтвердив его экспериментально, что при прохождении тока по неравномерно нагретому проводнику должно происходить дополнительное выделение (поглощение) теплоты, аналогичной теплоте Пельтье. Это явление получило название явления Томсона. Его можно объяснить следующим образом. Так как в более нагретой части проводника электроны имеют большую среднюю энергию, чем в менее нагретой, то, двигаясь в направлении убывания температуры, они отдают часть своей энергии решетке, в результате чего происходит выделение теплоты Томсона. Если же электроны движутся в сторону возрастания температуры, то они, наоборот, пополняют свою энергию за счет энергии решетки, в результате чего происходит поглощение теплоты Томсона.

 









Дата добавления: 2015-06-10; просмотров: 768;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.