Расчёт суммарных потерь давления в предположении квадратичного закона сопротивления
Потери давления для первой ветви запишутся следующим образом (см. рисунок 12):
(43)
Выразим скорости в формуле (43) через массовый расход в 1-й ветви:
где Аі=πd /4 – площадь поперечного сечения i-го участка трубы;
Азм=πd /4 - площадь поперечного сечения одной трубки змеевика.
Подставляя выражения для скоростей в уравнение (43) и, вынося за скобки общие сомножители, получим
(44)
Потери для второй ветви (см. Рисунки 12 и 13)
(45)
Выразим скорости через массовый расход во второй ветви:
; ;
и подставим в уравнение (45), тогда
, (46)
где z – число ходов в теплообменнике (z = 2 в нашем случае).
Потери давления для третьей ветви (см. Рисунок 12)
(47)
Выразим скорости через массовый расход в 3-ей ветви:
и подставляем в уравнение (47), тогда
(48)
В первом приближении счтаем, что li и zi не зависят от числа Rе.Тогда значение коэффициентов гидравлического трения определится по формуле Шифринсона (8). По таблице 1 для стального трубопровода после нескольких лет эксплуатации выбираем значение эквивалентной шероховатости D =0,2 мм, а для латунных загрязненных трубок значение D,=0,015 мм. Тогда коэффициенты гидравлического трения для труб различного диаметра будут равны:
т.к. , то ;
для труб змеевика
для труб теплообменника
где диаметр труб теплообменника определяется по формуле
.
Определяеи значения коэффициентов местных потерь по справочным данным, как это описано в разделе 2.1. Все коэффициенты местных потерь должны быть отнесены к динамическому давлению за местным сопротивлением,кроме случаев, оговариваемых особо. В расчетно-пояснительной записке необходимо дать схему каждого местного сопротивления.
Вентиль. Для вентиля с прямым шпинделем (рисунок 1) примем .
Пробковый кран (см. рисунок 2). Для угла поворота крана по таблице 3 знаходим 3.
Задвижка(см. рисунок 3). По высоте подъема задвижки и һ =30 мм и диаметру трубы d=75 мм определяем степень открытия
а затем по таблице 4 находим .
Диафрагма (см. рисунок 4). При диаметре отверстия диафрагмы d0=50 мм и диаметре трубы d=75 мм коэффициент сжатия струи определяется по формуле (15)
а коэффициент сопротивления диафрагмы – по формуле (14)
.
Внезапное расширение (см. рисунок 5). Коэффициент внезапного расширения определяется по формуле (16)
- для второго участка трубопровода
,
- для 8-го участка трубопровода
.
Внезапное сужение(см. рисунок 6). Определяем степень сжатия потока при сужении на 3-м участке
и по нему по таблице 5 находим коэффициент внезапного сужения .
Коэффициент потерь при наиболее резком сужении, когда меньшая труба выступает внутрь большой трубы (см. рисунок 7), определяется по формуле (17) для 9-го участка трубопровода
Плавный поворот трубы. Коэффициент потерь в колене при определяем по формуле (19). Для первого колена при d3=75мм и R1=75мм находим
.
Для второго колена при d4=R2=75 мм коэффициент потерь .
Для третьего колена при d7=75мм и R3=150мм коэффициент потерь
.
Для четвертого колена при d9=75мм и R4=150мм - .
Так как углы поворота для второго и четвертого колена больше 900, то коэффициент определяем по формуле (22)
- для второго колена при
;
- для четвертого колена при
.
Тогда коэффициенты местных потерь для второго колена
для четвертого колена
.
Змеевиковый теплообменник. По таблице 8 и по схеме (рисунок 12) определяем коэффициенты местных сопротивлений для змеевикового теплообменника:
- вход в камеру ;
- вход из камеры в трубки ;
- поворот на 1800 в U-образной трубке
- выход из трубок в камеру ;
- выход из камеры в патрубок .
Пароводяной подогреватель. По таблице 6 и по схеме теплообменника (рисунок 13) определяем коэффициенты местных сопротивлений для пароводяного подогревателя при движении воды
- вход в камеру ;
- вход в трубки теплообменника ;
- поворот на 180° из одной секции в другую через промежуточную камеру ;
- выход из трубок в камеру
- выход из камеры в патрубок .
Найденные значения коэффициентов гидравлического сопротивления подставляем в уравнения (44, 46, 48) и находим коэффициенты C1, C2, C3, предварительно определив плотность воды при температуре t =1800С по таблице Б.2.
.
где С1=1922,6.
Для второй ветви
С2=1915,9.
Для третьей ветви
С3=4821,6.
Определяем массовый расход в каждой ветви трубопровода:
Проверка правильности расчета расходов:
Дата добавления: 2015-06-10; просмотров: 1163;