Измерения электрических величин цифровыми приборами
Цифровыми измерительными приборами (ЦИП) называются приборы, автоматически вырабатывающие дискретные сигналы измерительной информации, т. е. показания которых представлены в цифровой форме.
|
| Рис. 4.19. Блок схема цифрового электрического прибора |
Входные величины у цифровых, как и у аналоговых, измерительных устройств непрерывные. Главное различие между аналоговыми и цифровыми измерительными приборами состоит в индикации измерительной информации. В аналоговых измерительных приборах результаты измерения могут принимать сколь угодно близкие друг к другу значения, а в цифровых приборах результаты измерений могут принимать только фиксированные значения, ближайшие из которых различаются на заданную (известную) величину — шаг квантования.
Цифровой прибор имеет два обязательных функциональных узла: аналого-цифровой преобразователь (АЦП) и цифровой индикатор (рис. 4.19). АЦП выдает цифровой код в соответствии со значением измеряемой величины, а индикатор отражает значение измеряемой величины в цифровой форме.
Кроме АЦП, к цифровым преобразователям относятся цифроаналоговые преобразователи (ЦАП), предназначенные для выполнения обратной АЦП операции, т. е. для преобразования цифрового кода в аналоговую величину. АЦП и ЦАП применяются также в измерительных, информационных, управляющих системах слежения и диагностики объекта, поэтому выпускаются промышленностью в виде автономных устройств.
Дискретность результатов измерений у ЦИП вызвана тем, что входные сигналы квантуются. Известно квантование двух видов: по уровню, по времени.
Цифровые измерительные приборы с квантованием по уровню. При квантовании по уровню весь диапазон измерения входной величины разбивается на ряд уровней и значение входной величины принимается равным ближайшему уровню. Суть квантования по уровню поясняется на рис. 4.20, где показано, что непрерывной входной величине X ставится в соответствие дискретная величина
(штриховая линия).
Функциональная схема ЦИП, реализующего квантование по уровню, показана на рис. 4.21. Измеряемая величина
поступает на вход сравнивающего устройства
. На другой вход
подается величина сравнения
, однородная с измеряемой, которая сформирована в ЦАП. Сравнивающее устройство (компаратор) формирует сигнал
и управляет работой ключа
. При
под действием сигнала
ключ замыкается и пропускает импульсы с выхода генератора импульсов
на вход счетчика импульсов.
|
| Рис. 4.21. Блок схема ЦИП с квантованием по уровню |
|
| Рис. 4.20. Диаграмма работы ЦИП |
Счетчик импульсов преобразует количество импульсов в цифровой код, который управляет работой ЦАП. Пока
, код на выходе счетчика возрастает и увеличивается
.При
СУ вырабатывает сигнал
, ключ отключает
,импульсы больше не поступают на счетчик, код и
не изменяются. При помощи цифрового индикатора ЦИ результат измерения представляется оператору. На этом процесс измерения закончен. Для следующего измерения необходимо вернуть счетчик и ЦАП в нулевое состояние при помощи управляющего устройства УУ или вручную нажатием кнопки. После этого прибор готов к новому измерению.
ЦИП с квантованием по уровню широко применяются для измерения постоянных и переменных напряжений, сопротивлений, частоты, неэлектрических величин.
Цифровые измерительные приборы с квантованием по времени. Широкое распространение получили ЦИП с время-импульсными измерительными преобразователями (ВИП). Преобразователь (рис. 4.22, а) формирует прямоугольные импульсы (рис. 4.22, б), длительность которых пропорциональна измеряемой величине:
.
Во время действия импульса
ключ
замыкается и пропускает импульсы с выхода генератора импульсов ГИ на вход счетчика.
Количество импульсов, поступивших на счетчик (рис. 4.22,
),
,
где
- период следования импульсов на выходе генератора.
Таким образом, код, который будет записан в счетчике, пропорционален измеряемой величине. Этот код поступает на цифровой индикатор ЦИ и там преобразуется в вид, удобный для представления оператору.
Преимуществами цифровых измерительных устройств с время импульсным преобразованием и квантованием по времени являются простота конструкции и унификация устройств.
|
| Рис. 4.22. Блок схема и диаграмма работы ЦИП – б с квантованием по времени |
4.1.11. Электронно-лучевой осциллограф
Осциллографы предназначены для визуального наблюдения и фиксации быстропротекающих процессов. Применяется два типа осциллографов: электронно-механические, используемые для исследования относительно медленно протекающих процессов (при частоте до 5 кГц) и электронно-лучевые — для исследования относительно быстро протекающих процессов (до сотен мегагерц). Ниже рассматриваются осциллографы второго типа.
|
| Рис. 4.23. Конструкция электроннолучевой трубки |
Осциллограф (рис. 4.23) состоит из электроннолучевой трубки, схемы развёртки и органов управления. Электроннолучевая трубка представляет собой стеклянную колбу, в которой помещается электронная пушка, отклоняющая система и экран. Электронная пушка при помощи катода, эмитирующего электроны, сетки
и анодов
и
формирует узкий электронный луч. Под действием электронов, падающих на экран, покрытый слоем люминофора, последний светится и на экране наблюдается светящаяся точка. Подавая на отклоняющие пластины напряжение, можно управлять положением луча. На горизонтально отклоняющие пластины
подается пилообразное напряжение, перемещающее луч в горизонтальном направлении, а на вертикальные
— исследуемое напряжение. Если, изменяя частоту пилообразного напряжения, добиться совпадения частоты последнего с частотой исследуемого напряжения или кратного отношения частот, то на экране будет наблюдаться неподвижное изображение исследуемого напряжения, которое можно анализировать и фотографировать.
Дата добавления: 2015-06-05; просмотров: 2732;
