Гормоны роста растений. Ауксины
Для многоклеточных организмов характерен тип регуляции, который связан с взаимодействием между отдельными клетками, тканями или даже органами. Для осуществления такой координации в организме вырабатываются гормоны. Гормоны растений получили название фитогормонов. Фитогормоны— это вещества, вырабатывающиеся в процессе естественного обмена веществ и оказывающие в ничтожных количествах регуляторное влияние, координирующее физиологические процессы. В этой связи к ним часто применяется термин — природные регуляторы роста. В большинстве случаев, но не всегда фитогормоны образуются в одних клетках и органах, а оказывают влияние на другие. Иначе говоря, гормоны способны к передвижению по растению и их влияние носит дистанционный характер. Большинство физиологических процессов, в первую очередь рост, формообразование и развитие растений, регулируется гормонами. Гормоны играют ведущую роль в адаптации растений к условиям среды. Известны следующие пять групп фитогормонов: ауксины, гиббереллины, цитокини-ны, абсцизовая кислота, газ этилен. В последнее время к ним относят брассины (брассиностероиды). Условно можно отнести первые три группы—ауксины, гиббереллины и цитокинины и частично брассины — к веществам стимулирующего характера, тогда как абсцизовую кислоту и этилен — к ингибиторам.
Ауксины— это вещества индольной природы. Основным фитогормоном типа ауксина является (3-индолилуксусная кислота (ИУК). Открытие ауксинов связано с исследованиями Ч. Дарвина (1860). Дарвин установил, что, если осветить проросток злака с одной стороны, он изгибается к свету. Однако, если на верхушку проростка надеть непроницаемый для света колпачок и после этого поставить в условия одностороннего освещения, изгиба не происходит. Таким образом, органом, воспринимающим одностороннее освещение, является верхушка растения, тогда как сам изгиб происходит в нижней части проростка. Из этого Ч. Дарвин заключил, что в верхушке проростка под влиянием одностороннего освещения вырабатывается вещество, которое передвигается вниз ивызывает изгиб. Идеи Ч. Дарвина получили развитие лишь через 50 лет в работах датского исследователя
П. Бойсен-Йенсена, который показал, что если срезанную верхушку вновь наложить на колеоптиль через слой желатины, то при одностороннем освещении наблюдается изгиб к свету. Было показано также, что удаление верхушки проростка (декапитация) резко замедляет рост нижележащих клеток, находящихся в фазе растяжения. При обратном накладывании верхушки проростка через слой желатина или агар-агара рост нижележащих клеток возобновляется. Далее исследования Вента показали, что, если срезанную верхушку поместить на блок из агар-агара, а затем наложить этот блок на декапитированный колеоптиль, рост возобновляется. Если агаровый блок, на котором в течение некоторого времени была помещена верхушка колеоптиля, наложить на обезглавленный колеоптиль асимметрично, то происходит изгиб, причем более интенсивно растет та сторона, на которую наложен блок. Все эти опыты привели к выводу, что в верхушке проростков вырабатывается особое вещество, которое, передвигаясь к нижележащим клеткам, регулирует их рост в фазе растяжения. Поскольку это вещество вырабатывается в одной части растения, а в другой вызывает физиологический эффект, оно было отнесено к гормонам роста растения — фитогормонам.
Исследования, проведенные академиком Н.Г. Холодным, показали, что рост различных видов растений, а также различных органов одного и того же растения регулируется одним и тем же гормоном — ауксином. Оказалось, что фитогормоны типа ауксина — β-индолилуксусная кислота (ИУК) и некоторые близкие к ней соединения — широко распространены в растениях. Наиболее богаты ауксинами растущие части растительного организма: верхушки стебля, молодые растущие части листьев, почки, завязи, развивающиеся семена, а также пыльца.
Образование ауксинов в большинстве случаев идет в меристематических тканях. Ауксины передвигаются из верхушки побега вниз к его основанию, а далее от основания корня к его окончанию. Таким образом, передвижение ауксинов полярно. Полярное передвижение ауксинов идет по проводящим пучкам со скоростью, значительно превышающей скорость обычной диффузии (5—10 мм/ч). Тем не менее, скорость передвижения ауксина по флоэме в 100 раз медленнее, чем ассимилятов. По-видимому, это активный процесс, требующий затраты энергии. Недостаток кислорода, торможение процесса дыхания с помощью различных ингибиторов приостанавливают передвижение ауксинов. Во взрослом дифференцированном растении при высокой концентрации гормона может наблюдаться и неполярное передвижение ауксинов вверх по растению с током воды по ксилеме. Ауксин, образующийся в кончике корня, может, по-видимому, передвигаться на короткие расстояния вверх, в зону растяжения. При изучении процессов синтеза ИУК, его транспорта и распределения между отдельными ком-партментами клетки большое значение имели опыты с мутантами.
Основным источником для образования β-индолилуксусной кислоты (ЙУК) является аминокислота триптофан. В свою очередь триптофан образуется из шикимовой кислоты. Однако в последнее время обнаружен триптофан-независимый синтез ауксина. Для экспериментов использовали проростки кукурузы с мутациями в области генов, кодирующих образование триптофансинтазы — фермента заключительной стадии синтеза ауксина из триптофана. Установлено, что ИУК может синтезироваться из индола и индолглицерофосфата.
Содержание ИУК зависит не только от скорости образования, но и от быстроты разрушения. Основным ферментом разрушения ИУК является ИУК-ок-сидаза (ОИУК). Можно полагать, что в некоторых случаях отсутствие влияния ИУК, внесенной извне, связано с быстрым ее окислением ИУК-оксидазой. Наряду с ферментативным окислением ИУК большое значение имеет ее разрушение на свету (фотоокисление). Особенно сильное разрушающее действие на ИУК имеют ультрафиолетовые лучи с длиной волны около 280 нм. Другим путем разрушения ИУК является декарбоксилирование.
В 1995 г. показано присутствие в клетках конъюгированного, т. е. связанного ауксина, который, как правило, неактивен. Установлена возможность конъюгации ауксина с глюкозой, амидами, глюканом. Клонирован ген, кодирующий фермент этой реакции. Предполагают, что конъюгация является механизмом регулирования содержания свободного ауксина. В клетках ауксин содержится в цитозоле и хлоропластах. Соотношение этих пулов регулируется значением рН среды.
Таким образом, по современным представлениям основными факторами, влияющими на содержание ауксина в растительных клетках являются следующие: триптофан-зависимый синтез ауксина, триптофан-независимый синтез ауксина, транспорт, окисление и декарбоксилирование, конъюгация.
Внешние условия оказывают значительное влияние на образование ИУК. Показано, что образование ИУК зависит от снабжения растения азотом, обеспечения растения водой. Освещение уменьшает содержание ауксинов, а затемнение увеличивает. Большое влияние на содержание ауксинов оказывает эпифитная микрофлора. Под влиянием микроорганизмов содержание ауксинов у высших растений заметно возрастает. По-видимому, именно через изменение содержания фитогормонов осуществляется первоначальное влияние условий внешней среды на процессы обмена веществ и рост. Содержание ауксинов меняется и в процессе онтогенеза растительного организма. Обычно в листьях максимум содержания ауксинов наступает в фазу бутонизации или цветения. Распускающиеся почки, прорастающие семена содержат большое количество ауксина. В период, когда процессы роста прекращаются (период покоя), содержание ауксинов падает (В.И. Кефели). Как правило, между содержанием ауксинов и скоростью роста клеток имеется прямая зависимость. Она хорошо проявляется и при внесении ауксинов извне. В целом регуляция образования и разрушения ИУК — это один из способов регуляции ее содержания, а следовательно, и процессов роста.
Согласно современным представлениям, для проявления активности фитогормонов необходимо создание комплекса с белком-рецептором (гормон-рецепторный комплекс). В этой связи большое значение имеет способность ауксинов (ИУК) образовывать связи с различными соединениями, в частности с белками. Уже обнаружен растворимый ауксинсвязывающий белок, который является рецептором. Он активен в эндоплазматическом ретикулуме и на поверхности клеток.
Физиологические проявления действия ауксинов
Наиболее ярким проявлением физиологического действия ауксина является его влияние на рост клеток в фазе растяжения. ИУК стимулирует выход протонов в клеточную стенку и увеличивает ее растяжимость. Под влиянием оптимальной концентрации ИУК рост в длину декапитированных отрезков стеблей гороха увеличивается более чем в два раза. Ауксины в некоторых случаях стимулируют деление клеток, например камбия. Под влиянием ауксинов может измениться направление дифференциации клеток. По данным Торрея, ауксин вызывает дифференциацию ксилемы, индуцирует корнеобразование. В последнее время эти данные получили подтверждение. Так, введение в растения петунии гена синтеза ауксинов из агробактерии индуцировало дифференциацию проводящих пучков. В тоже время после внедрения в растения табака гена, снижающего содержание ИУК, уменьшилось и число сосудов. Стимуляция ауксином роста боковых корней показана на мутантах арабидопсиса, у которых образование массы корней происходило на фоне в 17 раз большего накопления ауксина.
Таким образом, все проявления роста клеток находятся в определенной зависимости от содержания природных ауксинов. Большую роль играют ауксины при разрастании завязи и плодообразовании. Показано, что ауксины могут синтезироваться в пыльце, зародыше, эндосперме. На первых стадиях роста плодов ауксин поступает из эндосперма, а позднее — из зародыша. У некоторых растений ауксин стимулирует образование бессемянных (партенокарпических) плодов. Ауксины, так же как и другие фитогормоны, обусловливают взаимодействие отдельных органов растения (коррелятивный рост). Ауксин обуславливает явление апикального доминирования, проявляющегося в подавляющем влиянии верхушечной почки на рост пазушных. Участие ауксина в этом процессе установлено в 1935 г. Прямые определения показали, что через 4 часа после декапитации содержания ауксина в узлах увеличивалось в 5 раз. С участием ауксина связана также регуляция двигательной активности растений, в частности тропизмы и настии.
Действие ауксина находится в зависимости от его концентрации. Повышение концентрации ауксина выше оптимальной вызывает торможение роста. При этом для разных растений и для неодинаковых органов оптимальная концентрация ауксина резко различна. Одна и та же концентрация его может усилить рост одних органов и затормозить другие. Так, оптимальная концентрация для роста стебля составляет около 10 мг, тогда как для корня всего 0,01 мг ИУК на 1 кг массы растения. Концентрация ауксинов, усиливающая рост злаков, резко тормозит рост многих двудольных растений. Это может быть связано с тем, что ауксин стимулирует синтез другого фитогормона, ингибирующего рост, а именно этилена.
При всех физиологических проявлениях ауксины усиливают поступление воды и питательных веществ (аттрагирующее влияние). Имеются многочисленные данные, что ауксины являются регуляторами притока воды и питательных веществ. Ауксины влияют на распределение питательных веществ в растении (НА Максимов, Н.И. Якушкина). При внесении извне ауксинов или их синтетических аналогов они концентрируются в отдельных органах и клетках. Это вызывает приток к этим органам воды и питательных веществ и, как следствие, их усиленный рост. Одновременно рост других органов, содержащих меньше ауксинов, ослабляется, поскольку питательные вещества к ним поступают в меньшем количестве. Так, при обработке фитогормонами типа ауксина цветков томата происходит усиленное разрастание завязей, приток к ним питательных веществ значительно повышается, а рост боковых побегов тормозится. Общий вынос питательных веществ при этом не изменяется. Из этих опытов следует, что гормоны типа ауксина вызывают перераспределение питательных веществ в растении. В некоторых случаях ауксин может вызвать усиление притока питательных веществ и из внешней среды.
Существуют разные гипотезы, объясняющие действие ауксина на передвижение веществ. Не вызывает сомнения, что транспорт веществ по растительному организму определенным образом связан с напряженностью энергетического обмена. В этой связи важно отметить, что еще в 1933 г. появились исследования, показывающие, что под влиянием ауксина интенсивность дыхания растет (Д. Боннер). В отсутствие кислорода действие ауксина или не проявляется, или значительно ослабевает. На различных объектах установлено, что влияние ауксина на повышение интенсивности дыхания опережает во времени его действие на ростовые процессы. Под влиянием ИУК возрастает сопряженность окисления и фосфорилирования (коэффициент Р/О) и содержание в клетках АТФ. Это дает основание считать, что ИУК увеличивает энергетическую эффективность дыхания растений. Под влиянием ИУК возрастает и энергетический заряд клетки (отношение АТФ + АДФ к АМФ). Известно, что даже небольшие сдвиги в энергетическом потенциале клетки приводят к заметным изменениям в скорости различных ферментативных реакций. Положительные сдвиги в энергетическом обмене вызывают усиление передвижения питательных веществ и воды, что является одной из причин усиления роста растений. Решение вопроса о причинах усиления образования АТФ под влиянием ИУК связано с изучением первичных механизмов регуляторного влияния этого фитогормона.
Дата добавления: 2015-06-05; просмотров: 4793;