Гормоны роста растений. Ауксины

Для многоклеточных организмов характерен тип регуляции, который связан с взаимодействием между отдельными клетками, тканями или даже органами. Для осуществления такой координации в организме вырабатываются гормоны. Гормоны растений получили название фитогормонов. Фитогормоны— это веще­ства, вырабатывающиеся в процессе естественного обмена веществ и ока­зывающие в ничтожных количествах регуляторное влияние, координирующее физиологические процессы. В этой связи к ним часто применяется термин — природные регуляторы роста. В большинстве случаев, но не всегда фитогормо­ны образуются в одних клетках и органах, а оказывают влияние на другие. Иначе говоря, гормоны способны к передвижению по растению и их влияние носит дистанционный характер. Большинство физиологических процессов, в первую очередь рост, формообразование и развитие растений, регулируется гормонами. Гормоны играют ведущую роль в адаптации растений к условиям среды. Извест­ны следующие пять групп фитогормонов: ауксины, гиббереллины, цитокини-ны, абсцизовая кислота, газ этилен. В последнее время к ним относят брассины (брассиностероиды). Условно можно отнести первые три группы—ауксины, гиб­береллины и цитокинины и частично брассины — к веществам стимулирующе­го характера, тогда как абсцизовую кислоту и этилен — к ингибиторам.

Ауксины— это вещества индольной природы. Основным фитогормоном типа ауксина является (3-индолилуксусная кислота (ИУК). Открытие ауксинов свя­зано с исследованиями Ч. Дарвина (1860). Дарвин установил, что, если осветить проросток злака с одной стороны, он изгибается к свету. Однако, если на вер­хушку проростка надеть непроницаемый для света колпачок и после этого поста­вить в условия одностороннего освещения, изгиба не происходит. Таким обра­зом, органом, воспринимающим одностороннее освещение, является верхушка растения, тогда как сам изгиб происходит в нижней части проростка. Из этого Ч. Дарвин заключил, что в верхушке проростка под влиянием одностороннего освещения вырабатывается вещество, которое передвигается вниз ивызывает изгиб. Идеи Ч. Дарвина получили развитие лишь через 50 лет в работах датского исследователя
П. Бойсен-Йенсена, который показал, что если срезанную вер­хушку вновь наложить на колеоптиль через слой желатины, то при односторон­нем освещении наблюдается изгиб к свету. Было показано также, что удаление верхушки проростка (декапитация) резко замедляет рост нижележащих клеток, находящихся в фазе растяжения. При обратном накладывании верхушки про­ростка через слой желатина или агар-агара рост нижележащих клеток возобнов­ляется. Далее исследования Вента показали, что, если срезанную верхушку по­местить на блок из агар-агара, а затем наложить этот блок на декапитированный колеоптиль, рост возобновляется. Если агаровый блок, на котором в течение некоторого времени была помещена верхушка колеоптиля, наложить на обез­главленный колеоптиль асимметрично, то происходит изгиб, причем более ин­тенсивно растет та сторона, на которую наложен блок. Все эти опыты привели к выводу, что в верхушке проростков вырабатывается особое вещество, которое, передвигаясь к нижележащим клеткам, регулирует их рост в фазе растяжения. Поскольку это вещество вырабатывается в одной части растения, а в другой вызы­вает физиологический эффект, оно было отнесено к гормонам роста растения — фитогормонам.

Исследования, проведенные академиком Н.Г. Холодным, показали, что рост различных видов растений, а также различных органов одного и того же расте­ния регулируется одним и тем же гормоном — ауксином. Оказалось, что фитогормоны типа ауксина — β-индолилуксусная кислота (ИУК) и некоторые близкие к ней соединения — широко распространены в растениях. Наиболее богаты аук­синами растущие части растительного организма: верхушки стебля, молодые рас­тущие части листьев, почки, завязи, развивающиеся семена, а также пыльца.

Образование ауксинов в большинстве случаев идет в меристематических тка­нях. Ауксины передвигаются из верхушки побега вниз к его основанию, а далее от основания корня к его окончанию. Таким образом, передвижение ауксинов полярно. Полярное передвижение ауксинов идет по проводящим пучкам со ско­ростью, значительно превышающей скорость обычной диффузии (5—10 мм/ч). Тем не менее, скорость передвижения ауксина по флоэме в 100 раз медленнее, чем ассимилятов. По-видимому, это активный процесс, требующий затраты энергии. Недостаток кислорода, торможение процесса дыхания с помощью раз­личных ингибиторов приостанавливают передвижение ауксинов. Во взрослом дифференцированном растении при высокой концентрации гормона может на­блюдаться и неполярное передвижение ауксинов вверх по растению с током во­ды по ксилеме. Ауксин, образующийся в кончике корня, может, по-видимому, передвигаться на короткие расстояния вверх, в зону растяжения. При изучении процессов синтеза ИУК, его транспорта и распределения между отдельными ком-партментами клетки большое значение имели опыты с мутантами.

Основным источником для образования β-индолилуксусной кислоты (ЙУК) является аминокислота триптофан. В свою очередь триптофан образуется из шикимовой кислоты. Однако в последнее время обнаружен трип­тофан-независимый синтез ауксина. Для экспериментов использовали про­ростки кукурузы с мутациями в области генов, кодирующих образование триптофансинтазы — фермента заключительной стадии синтеза ауксина из трип­тофана. Установлено, что ИУК может синтезироваться из индола и индолглицерофосфата.

Содержание ИУК зависит не только от скорости образования, но и от быст­роты разрушения. Основным ферментом разрушения ИУК является ИУК-ок-сидаза (ОИУК). Можно полагать, что в некоторых случаях отсутствие влияния ИУК, внесенной извне, связано с быстрым ее окислением ИУК-оксидазой. На­ряду с ферментативным окислением ИУК большое значение имеет ее разруше­ние на свету (фотоокисление). Особенно сильное разрушающее действие на ИУК имеют ультрафиолетовые лучи с длиной волны около 280 нм. Другим путем раз­рушения ИУК является декарбоксилирование.

В 1995 г. показано присутствие в клетках конъюгированного, т. е. связанного ауксина, который, как правило, неактивен. Установлена возможность конъюгации ауксина с глюкозой, амидами, глюканом. Клонирован ген, кодирующий фермент этой реакции. Предполагают, что конъюгация является механизмом регулирова­ния содержания свободного ауксина. В клетках ауксин содержится в цитозоле и хлоропластах. Соотношение этих пулов регулируется значением рН среды.

Таким образом, по современным представлениям основными факторами, влияющими на содержание ауксина в растительных клетках являются следую­щие: триптофан-зависимый синтез ауксина, триптофан-независимый синтез ауксина, транспорт, окисление и декарбоксилирование, конъюгация.

Внешние условия оказывают значительное влияние на образование ИУК. По­казано, что образование ИУК зависит от снабжения растения азотом, обеспе­чения растения водой. Освещение уменьшает содержание ауксинов, а затемне­ние увеличивает. Большое влияние на содержание ауксинов оказывает эпифитная микрофлора. Под влиянием микроорганизмов содержание ауксинов у высших растений заметно возрастает. По-видимому, именно через изменение содержа­ния фитогормонов осуществляется первоначальное влияние условий внешней среды на процессы обмена веществ и рост. Содержание ауксинов меняется и в процессе онтогенеза растительного организма. Обычно в листьях максимум содержания ауксинов наступает в фазу бутонизации или цветения. Распускаю­щиеся почки, прорастающие семена содержат большое количество ауксина. В период, когда процессы роста прекращаются (период покоя), содержание ауксинов падает (В.И. Кефели). Как правило, между содержанием ауксинов и скоростью роста клеток имеется прямая зависимость. Она хорошо проявляется и при внесении ауксинов извне. В целом регуляция образования и разрушения ИУК — это один из способов регуляции ее содержания, а следовательно, и про­цессов роста.

Согласно современным представлениям, для проявления активности фитогормонов необходимо создание комплекса с белком-рецептором (гормон-рецепторный комплекс). В этой связи большое значение имеет способность ауксинов (ИУК) образовывать связи с различными соединениями, в частности с белка­ми. Уже обнаружен растворимый ауксинсвязывающий белок, который является рецептором. Он активен в эндоплазматическом ретикулуме и на поверхности клеток.

Физиологические проявления действия ауксинов

Наиболее ярким проявлением физиологического действия ауксина является его влияние на рост клеток в фазе растяжения. ИУК стимулирует выход протонов в клеточную стенку и увеличивает ее растяжимость. Под влиянием оптимальной концентрации ИУК рост в длину декапитированных отрезков стеблей гороха увеличивается более чем в два раза. Ауксины в некоторых случаях стимулируют деление клеток, например камбия. Под влиянием ауксинов может измениться направление дифференциации клеток. По данным Торрея, ауксин вызывает диф­ференциацию ксилемы, индуцирует корнеобразование. В последнее время эти данные получили подтверждение. Так, введение в растения петунии гена синте­за ауксинов из агробактерии индуцировало дифференциацию проводящих пучков. В тоже время после внедрения в растения табака гена, снижающего содержание ИУК, уменьшилось и число сосудов. Стимуляция ауксином роста боковых корней показана на мутантах арабидопсиса, у которых образование мас­сы корней происходило на фоне в 17 раз большего накопления ауксина.

Таким образом, все проявления роста клеток находятся в определенной за­висимости от содержания природных ауксинов. Большую роль играют ауксины при разрастании завязи и плодообразовании. Показано, что ауксины могут син­тезироваться в пыльце, зародыше, эндосперме. На первых стадиях роста плодов ауксин поступает из эндосперма, а позднее — из зародыша. У некоторых расте­ний ауксин стимулирует образование бессемянных (партенокарпических) пло­дов. Ауксины, так же как и другие фитогормоны, обусловливают взаимодейст­вие отдельных органов растения (коррелятивный рост). Ауксин обуславливает явление апикального доминирования, проявляющегося в подавляющем влия­нии верхушечной почки на рост пазушных. Участие ауксина в этом процессе установлено в 1935 г. Прямые определения показали, что через 4 часа после декапитации содержания ауксина в узлах увеличивалось в 5 раз. С участи­ем ауксина связана также регуляция двигательной активности растений, в част­ности тропизмы и настии.

Действие ауксина находится в зависимости от его концентрации. Повышение концентрации ауксина выше оптимальной вызывает торможение роста. При этом для разных растений и для неодинаковых органов оптимальная концентрация аук­сина резко различна. Одна и та же концентрация его может усилить рост одних органов и затормозить другие. Так, оптимальная концентрация для роста стебля составляет около 10 мг, тогда как для корня всего 0,01 мг ИУК на 1 кг массы расте­ния. Концентрация ауксинов, усиливающая рост злаков, резко тормозит рост мно­гих двудольных растений. Это может быть связано с тем, что ауксин стимулирует синтез другого фитогормона, ингибирующего рост, а именно этилена.

При всех физиологических проявлениях ауксины усиливают поступление во­ды и питательных веществ (аттрагирующее влияние). Имеются многочислен­ные данные, что ауксины являются регуляторами притока воды и питательных веществ. Ауксины влияют на распределение питательных веществ в растении (НА Максимов, Н.И. Якушкина). При внесении извне ауксинов или их синте­тических аналогов они концентрируются в отдельных органах и клетках. Это вызывает приток к этим органам воды и питательных веществ и, как следствие, их усиленный рост. Одновременно рост других органов, содержащих меньше ауксинов, ослабляется, поскольку питательные вещества к ним поступают в меньшем количестве. Так, при обработке фитогормонами типа ауксина цветков томата происходит усиленное разрастание завязей, приток к ним питательных веществ значительно повышается, а рост боковых побегов тормозится. Общий вынос питательных веществ при этом не изменяется. Из этих опытов следует, что гормоны типа ауксина вызывают перераспределение питательных веществ в растении. В некоторых случаях ауксин может вызвать усиление притока пита­тельных веществ и из внешней среды.

Существуют разные гипотезы, объясняющие действие ауксина на передви­жение веществ. Не вызывает сомнения, что транспорт веществ по растительно­му организму определенным образом связан с напряженностью энергетического обмена. В этой связи важно отметить, что еще в 1933 г. появились исследования, показывающие, что под влиянием ауксина интенсивность дыхания растет (Д. Боннер). В отсутствие кислорода действие ауксина или не проявляется, или значительно ослабевает. На различных объектах установлено, что влияние аук­сина на повышение интенсивности дыхания опережает во времени его действие на ростовые процессы. Под влиянием ИУК возрастает сопряженность окисле­ния и фосфорилирования (коэффициент Р/О) и содержание в клетках АТФ. Это дает основание считать, что ИУК увеличивает энергетическую эффективность дыхания растений. Под влиянием ИУК воз­растает и энергетический заряд клетки (отношение АТФ + АДФ к АМФ). Извест­но, что даже небольшие сдвиги в энергетическом потенциале клетки приводят к заметным изменениям в скорости различных ферментативных реакций. Поло­жительные сдвиги в энергетическом обмене вызывают усиление передвижения питательных веществ и воды, что является одной из причин усиления роста рас­тений. Решение вопроса о причинах усиления образования АТФ под влиянием ИУК связано с изучением первичных механизмов регуляторного влияния этого фитогормона.








Дата добавления: 2015-06-05; просмотров: 4634;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.