индукция.

Как было показано в §2.3, в диэлектриках источниками поля кроме сторонних являются также и связанные заряды. Поэтому теорема Гаусса для запишется:

. (2.24)

Так как из (2.23) , то: . Тогда:

, или

. (2.25)

Если ввести вектор , то электрическая индукция измеряется в тех же единицах, что и , т.е. в Кл/м2, - В/м, и из (2.25) получим:

. (2.26)

Это теорема Гаусса для вектора .

Поток вектора через замкнутую поверхность равен стороннему заряду, заключенному внутри этой поверхности.

Видно, что единственным источником являются свободные заряды. Вектор начинается на и заканчивается на .

Учтем, что: (2.19), тогда:

, (2.27)

- (2.28)

диэлектрическая проницаемость.

Применив (2.26) для точечного заряда, получим:

; .

. (2.29)

Если учесть, что , то напряженность поля точечного заряда в диэлектрике:

, (2.30)

то есть внутри диэлектрика поле в раз меньше, чем в вакууме. Именно с рассмотрения вопроса, почему поле в диэлектрике меньше, чем внешнее (или поле в вакууму) и начиналось изучение электрического поля в диэлектрике (§2.3). Отсюда ясен физический смысл . Во столько же раз меньше и потенциал точечного заряда:

. (2.31)

Тогда, емкость конденсатора при наличии диэлектрика в раз больше емкости, между пластинами которой содержится вакуум.

Рассмотрим теперь граничные условия для на границе двух диэлектриков.

На границе двух диэлектриков (рис.2.14) в поле возникают связанные заряды. Имеются две границы – 1-2 и 2-1 и две нормали на границе и . Они и показывают, какую границу мы рассматриваем.

 

1. Рассмотрим границу 1-2 (рис.2.15). Нормаль положительна, при этом (например, воздух-диэлектрик).

Чтобы вывести условия для нормальных составляющих, используем теорему Гаусса. В качестве замкнутой поверхности рассмотрим цилиндр (рис.2.15), для которого:

, .

Тогда из (2.23), - связанные заряды.

, (2.32)

но так как , то из (2.19) следует, что:

, .

Тогда , что и видно из рис.2.14.

Если , т.е. на границе нет сторонних зарядов, то, применив (2.26) и (2.24), получим:

, (2.33)

. (2.34)

Но так как , то . Это согласуется с результатами для . С учетом знака для границы 1-2 запишем граничные условия (2.32-2.34):

,

,

.

Так как , то:

. (2.35)

2. Рассмотрим границу 2-1 (рис.2.16): .

Используя теорему Гаусса как и на границе 1-2 и учтя, что , , получим:

;

; ;

Тогда: ; при этом , что согласуется с рис.2.14. Чтобы найти тангенциальные составляющие, используем теорему о циркуляции вектора (1.27). Выбрав контур в виде прямоугольника абвг, получим условие для .

;

;

. (2.36)

Подставляя выражения для и , получим:

. (2.37)

При ; .

Преломление силовых линий на границе.

Возьмем, как и прежде , тогда: из (2.35) и (2.36):

, ,

а также из (2.32):

, ,

Поэтому углы (см. рис.2.18).

Тогда , т.к.

. (2.38)

Силовые линии поля ведут себя, как показано на рис.2.18, т.е. преломляются на границе.

Пример.

Точечный заряд находится в центре шара из диэлектрика с проницаемостью . Радиус шара . Шар окружен безграничным диэлектриком с проницаемостью (рис.2.19). Найти на границе диэлектрика и связанный заряд внутри шара.

Напряженность поля как функция расстояния от центра шара по теореме Гаусса для (2.26) и формуле (2.27) запишем:

.

Тогда:

; и

. (2.39)

На границе 1-2 между диэлектриками:

. (2.40)

Видим, что знак зависит от соотношения между и . При , , , . Внутри шара при из (2.23):

.

Подставив (2.39), получим:

. (2.41)

Видно, что внутри шара всегда появляется связанный заряд , если заряд .








Дата добавления: 2015-06-01; просмотров: 567;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.016 сек.