ОСНОВНЫЕ ТИПЫ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ
Полупроводниковые диоды подразделяются на группы по многим признакам. Бывают диоды из различных полупроводниковых материалов, предназначенные для низких или высоких частот, для выполнения различных функций и отличающиеся друг от друга по конструкции. В зависимости от структуры различают точечные и плоскостные диоды. У точечных диодов линейные размеры, определяющие площадь п — р-перехода, такие же, как толщина перехода, или меньшее. У плоскостных диодов эти размеры значительно больше толщины перехода.
Точечные диоды имеют малую емкость п — р-перехода (обычно менее 1 пФ) и поэтому применяются на любых частотах вплоть до СВЧ. Но они могут пропускать токи не более единиц или десятков миллиампер. Плоскостные диоды в зависимости от площади перехода обладают емкостью в десятки пикофарад. Поэтому их применяют на частотах не выше десятков килогерц. Допустимый ток в плоскостных диодах бывает от десятков миллиампер до сотен ампер.
Основой точечных и плоскостных диодов являются пластинки полупроводника, вырезанные из монокристалла, имеющего во всем своем объеме правильное кристаллическое строение. В качестве полупроводниковых веществ для точечных и плоскостных диодов применяют чаще всего германий и кремний, а в последнее время также арсенид галлия (GaAs) и другие соединения.
Принцип устройства точечного диода показан на рис. 3.16.
Рис. 3.16. Принцип устройства точечного диода
Тонкая заостренная проволочка (игла) с нанесенной на нее примесью приваривается при помощи импульса тока к пластинке полупроводника с определенным типом электропроводности. При этом из иглы в основной полупроводник диффундируют примеси, которые создают область с другим типом электропроводности. Этот процесс называется формовкой диода. Таким образом, около иглы образуется миниатюрный п — р-переход полусферической формы. Следовательно, разница между точечными и плоскостными диодами заключается в площади п — р-перехода.
Плоскостные диоды изготовляются главным образом методами сплавления (вплавления) или диффузии (рис. 3.17).
В пластинку германия n-типа вплавляют при температуре около 500 °С каплю индия, которая, сплавляясь с германием, образует слой германия р-типа. Область с электропроводностью р-типа имеет более высокую концентрацию примеси, нежели основная пластинка сравнительно высокоомного германия, и поэтому является эмиттером. К основной пластинке германия и к индию припаивают выводные проволочки, обычно из никеля. Если за исходный материал взят высокоомный германий р-типа, то в него вплавляют сурьму и тогда получается эмиттерная область п-типа.
Следует отметить, что сплавным методом получают так называемые резкие, или ступенчатые, n — р-переходы, в которых толщина области изменения концентрации примесей значительно меньше толщины области объемных зарядов в переходе.
Диффузионный метод изготовления п —р-перехода основан на том, что атомы примеси диффундируют в основной полупроводник. Примесное вещество при этом обычно находится в газообразном состоянии. Для того чтобы диффузия была интенсивной, основной полупроводник нагревают до более высокой температуры, чем при методе сплавления. Например, пластинку германия n-типа нагревают до 900 °С и помещают в пары индия. Тогда на поверхности пластинки образуется слой германия р-типа. Изменяя длительность диффузии, можно довольно точно получать слой нужной толщины. От него и от основной пластинки делают выводы. При диффузионном методе атомы примеси проникают на относительно большую глубину в основной полупроводник, и поэтому п — р-переход получается плавным, т. е. в нем толщина области изменения концентрации примеси сравнима с толщиной области объемных зарядов.
Рассмотрим теперь диоды различного назначения.
Выпрямительные плоскостные диоды,Широко распространены низкочастотные выпрямительные диоды, предназначенные для выпрямления переменного тока с частотой до единиц килогерц (иногда до 50 кГц). Эти диоды применяются в выпрямительных устройствах для питания различной аппаратуры. Иногда их называют силовыми диодами. Низкочастотные диоды являются плоскостными и изготовляются из германия или кремния. Они делятся на диоды малой, средней и большой мощности, что соответствует предельным значениям выпрямленного тока до 300 мА, от 300 мА до 10 А и выше 10 А.
Германиевые диоды могут допускать плотность тока до 100 А/см2 при прямом напряжении до 0,8 В. Предельное обратное напряжение у них не превышает 400 В, а обратный ток обычно бывает не более десятых долей миллиампера для диодов малой мощности и единиц миллиампер для диодов средней мощности.
Мощные германиевые диоды работают с естественным охлаждением. Они изготовляются на выпрямленный ток до 1000 А и обратное напряжение до 150 В.
Выпрямительные кремниевые диоды в последнее время получили особенно большое распространение. По сравнению с германиевыми кремниевые диоды имеют ряд преимуществ. Предельная плотность прямого тока у них до 200 А/см2, а предельное обратное напряжение может быть до 1000 В. Рабочая температура от —60 до + 125°С (для некоторых типов даже до +150 °С). Прямое напряжение у кремниевых диодов доходит до 1,5 В, т. е. несколько больше, чем у германиевых диодов. Обратный ток у кремниевых диодов значительно меньше, чем у германиевых.
Мощные кремниевые диоды выпускаются на выпрямленный ток от 10 до 500 А и обратное напряжение от 50 до 1000 В.
Дата добавления: 2015-05-19; просмотров: 1158;