Методика развития (тренировка) силы мышц
Сила мышц снижается после продолжительной интенсивной мышечной работы, на нее влияет характер выполняемой работы, уровень тренированности мышц.
Развитие силы мышц достигается при тренировке с применением различных режимов работы мышц.
До 50-х годов для развития силы мышц в методике тренировок рассматривались частота занятий, интервалы отдыха, количество упражнений со штангой и их последовательность.
Современная спортивная методика тренировок наряду с преодолевающим режимом мышечной работы предусматривает удерживающий, уступающий, а также смешанный режим.
Миометрический метод (работа в преодолевающем режиме двигательной деятельности) представляет собой работу мышц в миометрическом режиме, т. е. их напряжение в режиме укорочения.
Изометрический метод получил широкое распространение для развития силы. Для увеличения силы мышц и их массы Т. Хеттингел (1966) считает оптимальной величину усилия, равную 40— 50% от максимума. При усилии, равном 20—30% от максимума, сила мышц не изменяется.
В практике спорта применяется напряжение 55—100% от максимума в течение 5—10 с. С увеличением напряжения уменьшается время удержания позы.
Необходимо учитывать индивидуальные особенности штангиста, а именно: количество подходов, времени, в течение которого упражняемая мышца должна напрягаться; величину напряжения в тренировке; количество тренировок в неделю для развития силы.
В спорте для развития силы часто используют метод комбинированного режима. Полученные данные говорят о высокой эффективности тренировки при сочетании уступающего, удерживающего (изометрического) и преодолевающего режимов мышечной деятельности. В процентном отношении тренировки выглядели следующим образом: 75% — преодолевающая работа, 15% — уступающая и 10% — удерживающая (А.Н. Воробьев, 1988). Построение тренировок выглядит следующим образом: 1) упражнения в уступающем режиме работы мышц должны применяться с весом 80— 120% от максимального результата в аналогичных упражнениях в преодолевающем режиме; 2) при работе с весом 80—100% от максимума упражнения следует выполнять 1—2 раза по 6—8 с, а с весом 100—120% — 1 раз в подходе; длительность опускания снаряда — 4—6 с; 3) интервалы отдыха между подходами должны быть 3—4 мин.
Упражнения в уступающем и удерживающем режимах целесообразно выполнять в конце тренировки.
Для развития силы мышц используется и статико-динамический метод. Подняв штангу до уровня колен, штангист удерживает ее в этом положении в течение 5—6 с, затем продолжают тягу; точно так же выполняются и приседания.
Все виды приседаний связаны с уступающей работой. На приседания тяжелоатлеты отводят около 10—25% всей тренировочной нагрузки. Обычно уступающую работу высококвалифицированные тяжелоатлеты выполняют с весом 110—120% от лучшего результата при преодолевающей работе, но не чаще одного раза в 7—10 дней.
Помимо описанных, существуют нетрадиционные методы развития силы. А.Н. Воробьевым разработан метод принудительного растяжения мышц. В регуляции напряжения мышц следует придерживаться такого правила: чем интенсивнее растяжение, тем меньше должно быть время воздействия. При очень сильных растяжениях достаточно 30 с. В системе тренировок каждый атлет должен применять упражнения с принудительным растяжением мышц; они наиболее целесообразны после серии подходов в каком-либо упражнении. Регулярное включение в тренировки принудительного растяжения «рабочих» мышц ведет к большому увеличению силы мышц.
Таким образом, принудительное растяжение мышц может служить одним из эффективных методов повышения работоспособности.
«Безнагрузочный» метод развития силы мышц был разработан А.Н. Анохиным (1909). Он заключается в «волевом» согласованном напряжении мышц-антагонистов без внешней нагрузки. Рекомендуется пятнадцать простых упражнений, при которых «волевым» напряжением развивается сила мышц.
«Безнагрузочный» метод развития силы мышц можно применять во время утренней зарядки.
Влияние различных факторов на проявление силы мышц. Сила сокращения мышц зависит от многих причин, в частности, от анатомического строения мышц (перистые, веретенообразные и мышцы с параллельными продольными волокнами); возбудимости ЦНС; гуморальных механизмов; оксигенации тканей и т. д.
При динамической работе максимальной интенсивности организм обеспечивается кислородом всего лишь на 10%.
Мышечная работа существенно изменяет гормональный фон. Так, после средней и тяжелой тренировки содержание норадреналина в крови может увеличиться в два раза, значительно возрастает содержание гормона роста. Уровень кортизола повышается только после тяжелых тренировок, тогда как содержание инсулина уменьшается.
На работоспособность существенно влияют глюкокортикоиды и андрогены.
Взаимосвязь силы мышц и ее массы. Известно, что чем больше мышечная масса, тем больше сила. Эту зависимость можно выразить формулой: F = а • Р • 2/3, где F — сила; а — некоторая постоянная величина, характеризующая физическую подготовленность атлета; Р — вес атлета.
У ведущих тяжелоатлетов мышечная масса составляет 55— 57% веса тела (А.Н. Воробьев, Э.И. Воробьева, 1975—1979).
Значение положения тела при выполнении силовых упражнений. Сила, которую может проявить человек, зависит от положения его тела. Для каждого движения существуют такие положения тела, в которых проявляются наибольшие и наименьшие величины силы (рис. 14.8). Например, во время сгибания в локтевом суставе максимум силы достигается при угле 90°; при разгибании в локтевом и коленном суставах оптимальный угол около 120°; при измерении становой силы максимальные показатели проявляются, когда угол около 155°, и т. п.
Возникает вопрос: какие положения надо выбирать при выполнении силовых упражнений? Нередко используют положения, когда собственная сила активных мышц максимальна, т. е. когда мышцы напрягаются в растянутом состоянии. Вследствие усиления потока проприоцептивных импульсов такое положение тела вызовет увеличение рефлекторной стимуляции и тем усилит воздействие упражнений.
Рис. 14.8.Зависимость силовых показателей от суставных углов (по Уильямсу и Штуцману, 1959).
Сплошная линия — данные мужчин; пунктирная — данные женщин. По горизонтали — суставной угол; по вертикали — сила (в фунтах)
Энергетика мышцы. Энергия мышечного сокращения. Во время активации мышцы повышение внутриклеточной концентрации Са ведет к сокращению и к усиленному расщеплению АТФ; при этом интенсивность метаболизма мышцы возрастает в 100— 1000 раз. Согласно первому закону термодинамики (закону сохранения энергии), химическая энергия, высвобождаемая в мышце, должна быть равна сумме механической энергии (мышечной работы) и теплообразования.
Даже изометрическое сокращение сопровождается непрерывной циклической активностью поперечных миозиновых мостиков и «внутренняя» работа, связанная с расщеплением АТФ и теплообразованием при этом значительна. Недаром даже такая «пассивная деятельность», как стойка «смирно», утомительна. Когда мышца поднимает груз, совершая «внешнюю» работу, расщепляется дополнительное количество АТФ. При этом усилие интенсивности метаболизма пропорционально выполняемой работе (эффект Фенна).
Обычно первоисточником энергии для мышечного сокращения служит гликоген или жирные кислоты. В процессе расщепления этих субстратов вырабатывается АТФ, гидролиз которого доставляет энергию непосредственно для самого сокращения: АТФ → АДФ + Фн + энергия.
Мышцы, сокращаясь, превращают весьма значительную часть(1/4—1/3) химической энергии в механическую работу, выделяя при этом теплоту; это — один из главных источников образования ее в организме.
Гидролиз одного моля АТФ дает примерно 48 кДж энергии. Однако лишь около 40—50% ее превращается в механическую энергию работы, а остальные 50—60% рассеиваются в виде тепла при запуске (начальная теплота) и во время сокращения мышцы, температура которой при этом несколько повышается. Таким образом, КПД элементарного преобразования АТФ в миофибриллах составляет примерно 40—50%. Однако в естественных условиях механический КПД мышц обычно гораздо ниже — около 20—30%, так как во время сокращения и после него процессы, требующие затрат энергии, идут и вне миофибрилл. Эти процессы, например, работа ионных насосов и окислительная регенерация АТФ, сопровождаются значительным теплообразованием (теплота восстановления). Чем больше совершенная работа, тем больше образуется тепла и расходуется энергоресурсов (углеводов, жиров) "и кислорода.
Такая закономерность, кстати, объясняет усталость, усиленное потоотделение и одышку при подъеме в гору, но не при спуске.
Мышцы способны производить механическую работу, обеспечивая перемещение человека, движение воздуха в дыхательных путях, движение крови и многие другие жизненно важные процессы.
Коэффициент полезного действия (КПД) мышцы. Когда мышцы совершают работу, в них освобождается химическая энергия, накопленная в процессе метаболизма; она частично превращается в механическую работу, а частично теряется в виде тепла.
S. Dickinson (1929) измеряла КПД превращения химической энергии в механическую работу у спортсмена, работающего на так называемом велоэргометре, где человек приводит во вращение колесо, нажимая ногами на педали. Через колесо переброшен матерчатый привод, который действует как тормоз. К одному концу этого привода подвешен груз, а другой конец прикреплен к пружинным весам (рис. 14.9). Если груз имеет массу m, то он будет тянуть привод с силой mg. На другой конец привода действует меньшая сила F, измеряемая пружинными весами. Таким образом, сила трения тормоза, приложенная к ободу колеса, равна mgF. Если колесо имеет радиус r и совершает n оборотов в единицу времени, то скорость движения его обода составляет 2πrn. Мощность, необходимая для того, чтобы вращать колесо с такой скоростью, преодолевая силу трения, равна 2πrn·(mg — F), и ее можно вычислить. Хотя описанная работа может показаться бессмысленной, эта мощность служит мерой «полезной работы» в том смысле, в каком это понятие входит в определение КПД.
Рис. 14.9.Принцип действия велоэргометра
С помощью велоэргометра можно измерять КПД мускулатуры ног, а также и максимальную мощность, которую она способна развить.
D.A. Parry (1949) показал, что мощность мускулатуры ног достигает 40 Вт на 1 кг мышечной ткани. На таком уровне она может оставаться лишь короткое время, так как мышцы не могут получать кислород с необходимой для этого скоростью.
Затрату химической энергии в единицу времени можно измерить косвенным путем, собирая выдыхаемый воздух испытуемого и исследуя его. На каждый мл О2, использованного в процессе дыхания, освобождается около 5 кал химической энергии. Более точно эту величину можно определить, если известно относительное содержание жиров и углеводов в пище, но скорость освобождения химической энергии можно вычислить вполне точно, если определять содержание в выдыхаемом воздухе не только кислорода, но и углекислоты.
S. Dickinson измеряла у испытуемых использование химической энергии в покое и во время работы на велоэргометре. Разность между этими величинами в каждом случае показывала, какое количество химической энергии расходовалось в единицу времени на создание механической мощности, необходимой для вращения колеса. Она нашла, что КПД варьирует в зависимости от скорости вращения педалей (рис. 14.10) и достигает максимальной величины — 22% — при нажимании ногой на педаль через каждые 0,9 с (т. е. при одном обороте педалей за 1,8 с).
Рис. 14.10.Превращение химической энергии в механическую работу у человека, приводящего в движение велоэргометр, на протяжении полуоборота
педалей (S. Dickinson, 1929). Прерывистая линия — теоретическая кривая (в тексте не упоминается)
Физическая работоспособность. Сокращаясь и напрягаясь мышца производит механическую работу, которая в простейшем случае (варианте) может быть определена по формуле А = РН, где А — механическая работа (кгм), Р — вес груза (кг), Н — высота подъема груза (м).
Таким образом, работа мышц измеряется произведением величины веса поднятого груза на величину укорочения мышцы. Из формулы легко вывести так называемое правило средних нагрузок, согласно которому максимальная работа может быть произведена при средних нагрузках. Действительно, если Р = 0, т. е. мышца сокращается без нагрузки, то и А = 0. При H = 0, что можно наблюдать, когда мышца не способна поднять слишком тяжелый груз, работа также будет равна 0.
Движения человека весьма разнообразны. В процессе этих движений мышцы, сокращаясь, совершают работу, которая сопровождается как их укорочением, так и их изометрическим напряжением. В этой связи различают динамическую и статическую работу мышц. Динамическая работа связана с мышечной работой, в процессе которой сокращения мышц всегда сочетаются с их укорочением. Статическая работа связана с напряжением мышц без их укорочения. В обычных условиях мышцы человека никогда не совершают динамическую или статическую работу в строго изолированном виде. Работа мышц всегда является смешанной. Тем не менее, в локомоциях может преобладать либо динамический, либо статический характер мышечной работы. Поэтому характеризуя мышечную деятельность в целом, говорят о ее статическом или динамическом характере. Бег, игры, плавание являются динамической работой, а удерживание на весу штанги, гири или гантелей — статическая работа.
Величина механической работы, совершаемой сокращающейся мышцей выражается в килограммометрах (кг/м), как произведение веса груза, поднимаемого мускулом, на высоту поднятия. Сила, проявляемая мышцей, зависит от числа составляющих ее мускульных волокон.
Длина мышечного брюшка обусловливает высоту поднятия груза; в среднем, мускулы при полном сокращении укорачиваются приблизительно на половину своей длины (длина сухожилия, разумеется, не изменяется — оно только передает движение на определенный пункт).
Найдено, что наибольший груз, который в состоянии удерживать мускул с поперечником в 1 см2, в среднем равняется 10 кг —так называемая абсолютная мышечная сила. Зная это, не трудно определить силу той или другой мышцы[4].
Конечно, вычисленная таким путем величина лишь в большей или меньшей степени приближается к истинной, так как не у всех людей и даже не у всех мускулов одного и того же субъекта мышечная сила одинакова.
Развитие быстроты. Под быстротой понимаются двигательные действия, выполняемые в минимальный отрезок времени.
Быстрота зависит от скорости мышечного сокращения, мощности мобилизации химической энергии в мышечном волокне и в превращении ее в механическую энергию сокращения.
Наибольший эффект в развитии быстроты можно достичь в возрасте от 8 до 15—16 лет.
Быстрота развивается при повторном выполнении скоростных упражнений. Выполнение скоростной работы с сокращенными интервалами отдыха ведет к развитию скоростной выносливости.
Биохимические процессы, происходящие в мышцах при скоростных и силовых нагрузках, очень похожи, поэтому развитие быстроты положительно влияет на развитие силы.
Быстрота развивается с помощью упражнений, выполняемых в максимально быстром темпе. К таким упражнениям можно отнести:
1) бег на короткие дистанции (20—30—50 м);
2) прыжки в длину, высоту, прыжки с места, прыжки-подскоки на ровном месте и в гору, прыжки на тумбу, на гимнастического козла и т. д.
3) метание;
4) быстро выполняемые упражнения с блином (от штанги), с грифом или со штангой, имеющей небольшой вес;
5) «боксирование» с гантелями в руках в течение 5—10 с. Тренироваться надо чаще, повторять нагрузку при полном восстановлении скоростных качеств.
Развитие ловкости. Ловкость — это способность быстро овладевать новыми движениями и перестраивать двигательную деятельность в соответствии с требованиями внезапно меняющейся обстановки. Критериями ловкости служат координация и точность движений.
Для развития ловкости используют спортивные игры, элементы акробатики и спортивной гимнастики, борьбу и т. д.
Развитие ловкости связано с возрастом, полом, телосложением и т. д.
Развитие выносливости. Выносливость — способность человека выполнять работу длительное время без снижения работоспособности.
Основным фактором, лимитирующим продолжение работы, является утомление. Раннее наступление утомления свидетельствует о недостаточном уровне развития выносливости. Более позднее наступление утомления — следствие повышения уровня развития выносливости. Степень выносливости у спортсменов определяется по физиологическим показателям: кардиореспираторная система, биохимические показатели и т. д.
Выносливость можно рассматривать как способность преодолевать утомление, ее следует считать основным фактором, определяющим развитие выносливости. Только работа до утомления (до «не могу») и преодоление наступающего утомления способствует повышению выносливости организма.
Выносливость лучше вырабатывается, если работа выполняется в среднем темпе.
Различают общую и специальную выносливость. Общая выносливость приобретается при разносторонней физической подготовке, но обязательно должны включаться тренировки (бег по пересеченной местности, ходьба на лыжах, академическая гребля и т. д.).
Выносливость имеет специфические особенности в том или ином виде спорта. Например, легкоатлеты-стайеры (или лыжники-гонщики) обладают значительно большей выносливостью в беге на длинные дистанции, чем тяжелоатлеты (или борцы); в то же время легкоатлеты в подъеме тяжестей менее выносливы, чем тяжелоатлеты. Мышечная деятельность у легкоатлетов-стайеров происходит в аэробном режиме, а у тяжелоатлетов — в близких к анаэробным условиям. Исследования показывают, что работа на выносливость (например, бег на длинные дистанции, кросс и пр.) отрицательно сказывается на развитии силы, и наоборот, тренировки «на силу» (подъем штанги, гирь и др.) отрицательно сказываются на развитии выносливости у бегунов-стайеров.
Специальная выносливость в разных видах спорта вырабатывается различными способами (методами). Например, специальная выносливость тяжелоатлета развивается за счет увеличения количества подъемов штанги на тренировке.
Выносливость возрастает под влиянием регулярных тренировок в большей мере, чем сила и особенно быстрота.
Развитие гибкости. Гибкость, или подвижность в суставах — важный компонент физической подготовленности во многих видах спорта и особенно в спортивной гимнастике, акробатике и других видах спорта. Гибкость определяют как способность человека выполнять движения с большей или меньшей по величине предельной амплитудой (рис. 14.11).
Плохая подвижность в суставах во многих случаях затрудняет сильное, быстрое сокращение мускулатуры. Если доступна большая амплитуда движений, значит мышцы-антагонисты легко растягиваются и оказывают меньшее сопротивление мощным агонистам, сокращение которых обеспечивает выполнение упражнения. Развитие гибкости, как и других физических качеств, имеет свои особенности в соответствии с требованиями вида спорта, возраста, пола и телосложения.
На рис. 14.12 показаны амплитуды движений в различных суставах.
В каждом виде спорта для развития гибкости спортсмен регулярно выполняет комплекс специальных упражнений.
Отмечено, что с ростом мышечной силы значительно уменьшается подвижность в суставах.
У молодых атлетов обычно более высокие показатели гибкости. С возрастом гибкость снижается, особенно у тяжелоатлетов, в связи с сильнейшей компрессионной нагрузкой на позвоночник.
Рис.14.11. Гибкость, подвижность в суставах
Рис. 14.12.Амплитуды движений в суставах: а — верхней конечности; б — нижней
Кроме того, на гибкость оказывает существенное влияние генетическая (наследственная) предрасположенность к гибкости, к ее развитию. Не у всех можно развить гибкость. В этой связи при отборе в спортивные секции (гимнастика, акробатика и др.), и в балет используют тест на гибкость. Не всегда удается развить гибкость, а при силовом варианте ее развития возникают различные заболевания суставов.
Глава 15 БИОМЕХАНИКА ЛОКОМОЦИЙ (ДВИЖЕНИЙ)
Дата добавления: 2015-05-03; просмотров: 2206;