В разрезах угольных и рудных скважин величина естественного электрического поля определяется в значительной мере окислительно-восстановительными потенциалами.
Таким образом, в песчано-глинистом разрезе при большой минерализации пластовой воды по сравнению с минерализацией промывочной жидкости коллекторы на кривых ПС характеризуются отрицательными аномалиями. Увеличение в составе пород примесей глин отмечается уменьшением отрицательной аномалии достигая максимальных значений в чистых глинах.. Уплотненные породы, содержащие незначительное количество глинистых примесей, выделяются по кривым ГИС как чистые глины. Изменение потенциалов самопроизвольной поляризации по разрезу используют для установки границ пластов и их корреляции, выделения глинистых, пористых и проницаемых интервалов.
2. Боковое каротажное зондирование (БКЗ) - заключается в измерении кажущегося сопротивления пластов по разрезу скважины набором однотипных зондов разной длины. Зонды разного размера, имея неодинаковый радиус исследования, фиксируют величину кажущегося сопротивления, обусловленную различными объемами проводящих сред. БКЗ применяют для исследований всех типов разрезов с целью определения: радиального градиента электрического сопротивления пород и выделения на этой основе пород-коллекторов, в которые происходит проникновение промывочной жидкости; удельных электрических сопротивлений ( УЭС ) не измененной части пластов и зон проникновения; - оценки глубины проникновения. На основании теоретических формул построены палетки БКЗ для определения истинного удельного сопротивления пластов при отсутствии проникновения фильтрата промывочной жидкости (двухслойные палетки) и при его наличии (трехслойные палетки). В качестве зондов БКЗ обычно используют набор последовательных градиент-зондов, т.е. непарный токовый электрод А расположен выше парных приемных электродов M и N, причем АМ >>MN ( А0.4М0.1N, А1.0М0.1N; А2.0М0.5N; А4.0М0.5N; А8.0М1.0N); одного обращенного градиент-зонда (обычно 0.5N2.0А), одного потенциал-зонда (обычно N6.0М0.5А илиN11.0М0.5А). Длины градиент-зондов определяются как расстояние от непарного электрода А до средней точки между парными электродами М и N, последняя является точкой записи градиент-зонда. Радиус исследования равен длине зонда. Длина потенциал-зонда – расстояние между непарными сближенными электродами, точка записи соответствует средней точке между ними. Радиус исследования равен двойной длине зонда.
:
3. Боковой каротаж (БК ) - измерения кажущегося сопротивления по стволу скважины трехэлектродным зондом бокового каротажа с автоматической фокусировкой тока. Зонд имеет центральный электрод Ао (см. рис.3), симметрично по отношению к которому расположены соединенные между собой удлиненные экранирующие электроды (А1-0, А1-1).
Схема зонда бокового каротажа
4. Индукционный каротаж (ИК) -изучается удельная электрическая проводимость горных пород посредством индуцированных (наведенных) токов. Для этого в скважину опускается прибор (зонд) имеющий в своем составе генераторную (Г) и измерительную (И) катушки, расположенные друг от друга на непроводящем стержне. Расстояние между генераторной и измерительной называется длиной зонда. При пропускании через излучающую катушку переменного тока высокой частоты (20 000 Гц), вырабатываемого генератором, вокруг катушки и в окружающей среде создается переменное магнитное поле,индуцирующее в горной породе электромагнитные вихревые токи, которые фиксируются измерительной катушкой зонда. Величина вихревых токов возникающих в горной породе зависит от величины её удельной электропроводности.Чем выше электропроводность среды, тем больше величина ЭДСвихревыхтоков. В свою очередь, магнитное поле вихревых токов индуцирует в приемной катушке скважинного прибора ЭДС, представляющую собой векторную сумму активной составляющей, совпадающей по фазе с током питания генераторной катушки, и реактивной составляющей, сдвинутой на 90 относительно питающего тока. С ростом электропроводности среды ЭДС активного сигнала увеличивается медленнее и по более сложному закону. Нарушение пропорциональности между активным сигналом и электропроводностью среды связано со взаимодействием вихревых токов. Это явление называется скин-эффектом. Чем выше частота тока и электропроводность среды, тем значительнее взаимодействие вихревых токов и, следовательно, существеннее влияние скин-эффекта на показания индукционного метода
.
Для снижения влияния скважины, зоны проникновения и вмещающих пород на результаты ИК используют фокусировку электромагнитного поля. Для этого применяют многокатушечные фокусирующие зонды, которые рассматриваются как совокупность двухкатушечных зондов, образованных всеми парами генераторных и измерительных катушек зонда. Основное преимущество метода ИК состоит в том, что при его выполнении нет необходимости прямом электрическом контакте между измерительным зондом и горной породой, следовательно, ИК эффективен при изучении скважин заполненных непроводящими буровыми растворами на нефтяной основе и в сухих скважинах. Для пересчета проводимости, полученной по данным индукционного каротажа в сопротивление необходимо пользоваться палетками (либо формулами пересчета) составленными для конкретной аппаратуры. Оптимальным для разреза Прикамья является зонд ИК размером 1м, глубина исследования которого ориентировочно до 4-х метров .
5. Микробоковой каротаж (МБК) – служит для определения УЭС ближней зоны пласта (промытой зоны) при толщине глинистой корки менее 10мм; - получения прямых качественных признаков на выделение коллекторов по МБК с разрешением по вертикали 20-30 см (совместно с БК); - определения эффективной мощности коллектора по разнице значений УЭС нормированных диаграмм БК и МБК с разрешением по вертикали от 0,4-0,6 м; - выделения плотных непроницаемых прослоев, в том числе в среде коллекторов; выделения размываемых глин-покрышек, дающих значительные каверны; - выделения зон частого чередования участков разреза тонкослоистого строения с ухудшенными коллекторными свойствами, зонами глинизации или представленные неколлекторами, выделение зон трещинноватости.
Сущность МБК заключается в измерении удельного сопротивления прискважинной части пласта (промытой зоны) при помощи трехэлектродной установки, состоящей из центрального электрода А0, окружающего его измерительного электрода N и экранного электрода АЭ расположенных на прижимном башмаке.Схема установки МБК.
.
Электроды А0 и АЭ имеют одинаковые потенциалы, благодаря чему ток электрода А0 распространяется перпендикулярно к поверхности зонда и стенке скважины, расходящегося в породах на расстояние 8-10 см (радиус исследования) от поверхности «башмака».
Такая конструкция зонда существенно уменьшает искажающее влияние бурового раствора и глинистой корки и позволяет более точно в отличие от обычного микрозондирования определить кажущееся сопротивление промытой зоны. Можно считать, что глинистая корка толщиной менее 1.5 см практически не оказывает влияния на результат измерений.
6. Микрозондирование (МЗ) - решает следующие задачи: определение УЭС промывочной жидкости (по интервалам каверн) как подтверждающая информация при интерпретации комплекса БКЗ; - определение кажущегося сопротивления исследуемой среды каждой установкой в объеме всего радиуса исследования в диапазоне значений до 200 Ом.м; - при наличии глинистой корки и радиального градиента сопротивлений положительными приращениями на диаграммах МКЗ выделяются коллекторы с межгранулярной средней и высокой пористостью, при условии, что сопротивления, измеряемые микрозондами, превышают не более чем в 5 раз значения УЭС промывочной жидкости; положительные приращения на диаграммах относятся к прямым качественным признакам проникновения фильтрата промывочной жидкости в пласты и подтверждают движение флюида в пласты, образование глинистых корок и радиальных градиентов сопротивлений; - определение эффективной мощности коллекторов с достоверным выделением отдельных проницаемых прослоев толщиной от 0,4 м и выше, при разрешающей способности МКЗ 02 см; - выделение плотных непроницаемых прослоев, в том числе в среде коллекторов; - выделение размываемых глин-покрышек, дающих значительные каверны; - выделение зон частого чередования участков разреза тонкослоистого строения с ухудшенными коллекторными свойствами, зонами глинизации или представленные неколлекторами; - при незначительном проникновении или его отсутствии по данным МКЗ возможно разделение нефтенасыщенных и водонасыщенных участков пласта: - данные МКЗ используются при привязке керна к глубине; - данные МКЗ используются как вспомогательный материал при детальных литостратиграфических расчленениях и других геологических построениях, при детальном изучении строения и свойств объекта. Метод микрозондирования заключается в детальном исследовании кажущегося сопротивления прискважинной части разреза зондами очень малой длины. В качестве зондовой установки служит резиновый “башмак”, на котором установлены три точечных электрода на расстоянии 2.5 см друг от друга. Они образуют два зонда: микроградиентзонд (МГЗ) A0.025M0.025N и микропотенциалзонд (МПЗ) A0.05M, у которого электродом N служит корпус прибора . Схема зондовой установки МКЗ
Радиус исследования МГЗ приблизительно равен 3-5 см, а глубина исследования МПЗ в 2.0-2.5 раза больше, т.е. составляет 10-12см. Поскольку радиус исследования МГЗ меньше, чем МПЗ, то на его показания оказывают большее влияние промывочная жидкость и глинистая корка, а на показания МПЗ - промытая зона скважины. Т.к. в наших условиях удельное сопротивление промытой зоны больше сопротивления глинистой корки, то против коллекторов показания МПЗ превышают показания МГЗ, т.е. пласты-коллекторы характеризуются положительными приращениями кажущегося сопротивления.
7. Резистивиметрия -определение сопротивления бурового раствора или воды в скважине. Работы проводят резистивиметром, который представляет собой зонд малых размеров, помещенный в трубку из изолятора. При перемещении зонда по скважине внутри трубки свободно проходит жидкость, заполняющая скважину, а влияние окружающих пород исключается стенками трубки. Регистрация проводится так же, как и в методе КС. Коэффициент резистивиметра определяется путем его эталонировки в жидкости с известным сопротивлением.Данные о сопротивлении бурового раствора или воды в скважине используются для обработки каротажных диаграмм (особенно при БКЗ) и для выявления мест подтока подземных вод разной минерализации. Кроме того, резистивиметрия применяется для изучения скоростей фильтрации подземных вод.
8. Кавернометрия, профилеметри - измерение диаметра ствола скважины относится к основным исследованиям, проводится во всех поисковых и разведочных скважинах, в интервалах детальных исследований и по всему открытому стволу. Кавернометрия обеспечивает высокое вертикальное расчленение разреза (могут выделятся прослои толщиной до 0,2-0,3 м), ее показания против пласта свободны от влияния вмещающих пород; - обеспечивает выделение проницаемых пород по сужению диаметра ствола скважины, вследствие образования глинистой корки, которая является результатом проникновения фильтрата промывочной жидкости в проницаемые пласты; - обеспечивает выделение размытых участков стволов скважин (каверны), которые
Являются в большинстве случаев прямыми признаками пластичных глин (покрышек), а в ряде случаев признаками порово-трещинных зон.В разрезе различной литологии фактический диаметр скважины не всегда является номинальным и может быть больше или меньше диаметра долота. Фактический диаметр скважины измеряется каверномером, который представляет из себя четыре рычага, прижатых к стенке скважины. По отклонениям этих рычагов можно рассчитать диаметр скважины в двух взаимно перпендикулярных плоскостях, а также ее средний диаметр. Кривые отклонения рычагов каверномера (радиусы) могут иметь синусоидальную форму, обусловленную вращением прибора в скважине. При этом кривые профилей должны регистрировать реальный диаметр скважины.
Пример записи диаграммы кавернометрии
Вопрос 8. Радиоактивные методы исследования скважин
Дата добавления: 2015-04-15; просмотров: 2965;