Обоснование избранного подхода к разработке функционального компьютерного мониторинга
Предложенная J.H.Siegel и соавт. |33. 35] система функционального компьютерного мониторинга основана на предположении, что применение математической методики кластерного анализа позволяет выделить типовые клинические образы (как их называет сам автор — паттерны [31. 32|). Патогенетической основой для определения таких клинических образов при некоторых критических состояниях (травма, сепсис) послужили критерии, характеризующие особенности баланса между аэробным и анаэробным метаболическими путями синтеза энергетических субстратов.
Теоретическим основанием для выделения этой особенности патогенеза шока послужили многочисленные сообщения патофизиологов и клиницистов о типичном для критических состояний, в том числе и для септического шока, несоответствии между относительно высокой доставкой кислорода тканям и его низким потреблением. с одной стороны, и между нарастанием продуктов анаэробного метаболизма (лактата и пирувата) и снижением продукции углекислого газа — с другой. В связи с этим некоторые нарушения основных видов обмена в ходе патогенеза сепсиса представляются следующим образом.
Воздействие инфекционного агента приводит к значительным нарушениям метаболизма в организме пострадавшего. Прежде всего это характеризуется резким возрастанием липолиза, как основного источника энергетических ресурсов, что сопровождается повышением уровня свободных жирных кислот. Отсутствие (или недостаток) поступления экзогенных белков приводит к выраженному катаболизму белков мышечной ткани.
Образовавшийся в результате миолиза пул аминокислот, к тому же на фоне усиленного потребления некоторых из них, в значительной степени по своей качественной структуре отличается от такового в организме здорового человека. По некоторым данным, это является одним из факторов, предрасполагающих к синтезу “фальшивых нейротрансмиттеров” [29, 39]. В то же время имеются данные как экспериментальные, так и клинические [19, 27], свидетельствующие о прямом повреждающем действии эндотоксина на кислород-транспортирующие механизмы клеточной мембраны. Следовательно, развивающиеся метаболические нарушения приводят, с одной стороны, к непосредственной блокаде кислородзависимых метаболических механизмов в клетке, а с другой — к неполному окислению ароматических аминокислот и синтезу “фальшивых нейротрансмиттеров”. Это служит базисом еще одному патофизиологическому феномену, наблюдаемому при сепсисе, — несоответствию между значительно повышенной производительностью сердца и емкостью сосудистого русла.
По прошествии уже более двадцати лет после опубликования J.H.Siegel и соавт. первых работ [31, 32], можно отметить, что мы имеем более глубокие представления о природе развивающихся метаболических нарушений, в частности, о роли экосистемы тонкой кишки и синдрома энтеральной недостаточности в патогенезе сепсиса. Однако основные взаимоотношения между нарушениями метаболизма и их патофизиологическим отражением при генерализованных воспалительных процессах, на которых основывалась разработка системы мониторинга, остались прежними.
Использование такой патофизиологической базы наряду с математическим аппаратом, разработанным сотрудниками исследовательского центра IBM, позволило уже в 1971 году выделить три типовых патологических клинических образа, воплощающих в интегральном выражении клинико-патофизиологическую характеристику общего ответа на критическую ситуацию у конкретного больного в конкретный момент времени. Они получили название “паттерн А”, “паттерн В” и “паттерн С”. Для исследования были отобраны восемь переменных — среднее артериальное давление, центральное венозное давление, сердечный индекс, артерио-венозный градиент кислорода, венозное парциальное давление углекислого газа и кислорода, кислотность венозной крови в единицах рН, время выброса (физиологический показатель, характеризующий контрактильную способность миокарда).
Эти исследования были произведены у 92 пациентов с различными формами септического и гиповолемического шока. Каждый пациент имел от 50 до 200 данных, соотнесенных к одному временному показателю. Всего у пациента проводили от 2 до 10 исследований.
Описывая математический способ выделения соответствующей выборки больных, авторы подчеркивают [16, 35], что после проведения кластерного анализа и определения указанных патологических групп было произведено определение однородности групп исследуемых больных. В результате однородность таких групп больных достигалась первоначальным клиническим отбором — оставлялись только больные с признаками инфекции и признаками шока, а удалению подлежали больные с хроническими заболеваниями — циррозом печени, сердечной и легочной недостаточностью. После завершения этого этапа однородность подтверждалась статистическими методами.
Включение больных с первичной сердечной недостаточностью, которые отбирались для операций аорто-коронарного шунтирования, привело к необходимости пересмотра полученных трех профилей и выделению четвертого уже в 1972 году [32]. В итоге полученные профили были соотнесены с клиническими характеристиками и были определены как:
— профиль гипердинамического стрессового ответа;
— профиль метаболических нарушении;
— профиль легочной недостаточности;
— профиль сердечной недостаточности.
Учитывая потребности в более детальном описании насосной функции сердца, к анализируемым признакам были добавлены еще два. Их использование в качестве определяющих в кластерном анализе и привело к выделению специального профиля первичной сердечной недостаточности. Таким образом, был сформирован массив и выделены четыре типичных патофизиологических профиля.
Учитывая крайне затруднительное представление в одиннадцатимерном пространстве, был разработан математический аппарат определения дистанции до каждого из типичных профилей от конкретного профиля пациента в данный момент времени, что позволило перейти от одиннадцатимерного пространства к четырехмерному. Принимая во внимание первичность метаболических нарушений, было предложено исследовать траекторию клинического течения у пациента в двухмерном пространстве, где по оси абсцисс откладывалось отношение дистанции до профиля “легочной недостаточности” к дистанции до профиля “метаболического дисбаланса” (отношение, позволяющее оценить выраженность анаэробного компонента в метаболизме энергетических субстратов), а по оси ординат — отношение дистанции до профиля “сердечных нарушений” к дистанции до профиля “гипердинамического стрессового ответа”, позволяющее оценить выраженность нарушений первично сердечной функции или периферической сосудистой сети [31].
В период с 1979 по 1983 годы было опубликовано большое количество материалов, полученных при использовании данной системы в клинической практике [10, 34, 36—40]. К сожалению, имеющиеся недостатки в структуре системы, на которые уже выше было указано, привели к прекращению ее функционирования.
Дата добавления: 2015-03-09; просмотров: 574;