Теоретическое описание. Неоднородное течение жидкости, т.е
Неоднородное течение жидкости, т.е. такое, при котором скорость течения различна в разных местах, не является равновесным. Поэтому в жидкости будут происходить процессы, стремящиеся выровнять скорость течения. Такие процессы называются вязкостью или внутренним трением. Предположим, что жидкость всюду течет в направлении оси z , а значение скорости v меняется только в направлении х , перпендикулярном течению (рис.1). Тогда в направлении оси х возникает поток импульса. Импульс, переносимый за 1с через единичную площадку, перпендикулярную оси х, называется плотностью потока импульса и обозначается .
Из общих соображений следует, что пропорциональна градиенту скорости течения н направлена против градиента, т.е.
, (1)
где h – коэффициент вязкости среды.
Рассмотрим теперь вязкий поток, возникающий в жидкости под действием касательной силы, стремящейся сместить один слой молекул относительно другого (рис.2). Пусть f - сила, действующая на единицу поверхности, а d -расстояние между соседними слоями. Тогда на одну молекулу будет действовать сила, равная f/nd, где n –концентрация молекул. При перемещении молекулы в активированное состояние (рис.3) сила f/nd совершает работу, равную , поэтому потенциальный барьер слева от активированного состояния уменьшается на величину этой работы (внешняя сила «помогает» молекуле совершить скачок в прямом направлении), а справа, наоборот. увеличивается (внешняя сила «препятствует» молекуле совершить обратный скачок). Эта ситуация изображена иа рис.4, где .
Рис.3 Рис.4.
Поэтому при наличии внешней силы частоты перескоков в свободную ячейку g1 и обратного перескока g2 будут неодинаковы, и в результате возникает поток молекул в направлении приложенной силы, скорость которого
В результате переноса импульса (в направлении х) в жидкости возникают касательные по отношению к течению силы вязкого трения
, (2)
где S – площадь, на которую действует .
Известно, что вязкость газов с ростом температуры растет, тогда как вязкость жидкостей убывает. Это различие обусловлено качественно разным характером теплового движения молекул газа и жидкости.
По своей структуре жидкость ближе к кристаллическим твердым телам, чем к газам. Тепловое движение молекул жидкости сводится к колебаниям около некоторых положений равновесия (узлов), которые в отличие от положений равновесия в кристаллах носят временный характер –через некоторое время (время релаксации) молекула жидкости скачком переходит в новое, свободное положение равновесия. Чтобы совершить этот переход, молекула должна преодолеть потенциальный барьер, высота которого Ua называется энергией активации (рис.3). Частота таких переходов g определяется распределением Больцмана:
(3)
где g0 – некоторая константа.
Очевидно, что в отсутствие внешних сил частоты переходов в прямом и обратном направлениях будут одинаковыми и никакого результирующего течения не возникает. Так как обычно
и , то .
С учетом того, что , получаем выражение для коэффициента вязкости в виде .
Как показывают расчеты, , где h – постоянная Планка. Полагая также , получим окончательное выражение для коэффициента вязкости жидкости:
(4)
Как следует из формулы (4), вязкость жидкости резко (экспоненциально) убывает с ростом температуры. Кроме того, вязкость сильно зависит от вида жидкости и от ее чистоты.
Действие сил внутреннего трения легко наблюдать при движении тела в жидкости. При малых скоростях и удобообтекаемой форме тела, когда не возникает вихрей, сила сопротивления обусловлена исключительно вязкостью жидкости. Слой жидкости, непосредственно прилегающий к твердому телу, увлекается им полностью. Следующий слой увлекается за телом с меньшей скоростью. Таким образом, между слоями возникают силы сопротивления. Для небыстрого движения шарика в жидкости Стокс вывел путем теоретического рассмотрения формулу расчета силы сопротивления:
(5)
где h – динамический коэффициент вязкости; –радиус шарика; v – скорость его движения относительно жидкости.
Предоставим маленькому шарику возможность падать в жидкость под действием силы тяжести. На него будут действовать следующие силы (рис.5): 1. Сила тяжести, направленная по вертикали вниз
где – плотность шарика, g - ускорение свободного падения.
2. Выталкивающая сила F1, являющаяся результатом гидростатического давления. Она направлена по вертикали вверх и равна по закону Архимеда силе тяжести жидкости в объеме тела: , где – плотность жидкости.
3. Сила внутреннего трения F2 . Она направлена против направления скорости шарика, т.е. вертикально вверх. По формуле Стокса
Силы G и F1 постоянны, а сила F2 увеличивается по мере увеличения скорости шарика. При некоторой скорости v наступает момент, когда сила G, направленная вниз, будет уравновешена силами F1 и F2 , направленными вверх; с этого момента шарик будет двигаться равномерно, в соответствии с первым законом Ньютона. Скорость равномерного падения невелика, если шарик мал, и ее легко измерить. Тогда из условия равновесия сил
можно определить динамический коэффициент вязкости
(6)
Дата добавления: 2015-03-07; просмотров: 607;