Понятие о мультиполе
Диполь является частным случаем системы электрических зарядов, обладающей определенной симметрией. Можно указать еще примеры симметричных систем зарядов (рис. 12.13). Общее название подобных распределений зарядов — электрические мультиполи.
Они бывают разных порядков (l = 0, 1, 2 и т. д.), число зарядов мультиполя определяется выражением 21. Так, мультиполем нулевого порядка, (2° = 1) является одиночный точечный заряд (рис. 12.13, а), мультиполем первого порядка (21 = 2) — диполь, мультиполем второго порядка (22 = 4) — квадруполь (рис. 12.13, б), мультиполем третьего порядка (23 = 8) — октуполь (рис. 12.13, в) и т. д.
Потенциал поля мультиполя убывает на значительных расстояниях r от него пропорционально 1/rl + 1. Так, для заряда (l = 0) φ ~ 1/r, диполя (1 = 1) φ ~ 1/г2, для квадруполя (l = 2) φ ~1/г3 и т. д.
Если заряд распределен в некоторой области пространства, то потенциал электрического поля в любой точке А вне системы зарядов можно представить в виде некоторого приближенного ряда:
Здесь г расстояние от системы зарядов до точки А с потенциалом φ; f1, f2, f3, …— некоторые функции, зависящие от вида мультиполя, его зарядов и от направления на точку А. Первое слагаемое (12.32) соответствует монополю, второе — диполю, третье — квадруполю и т. д. В случае нейтральной системы зарядов первое слагаемое равно нулю. Если r так велико, что можно пренебречь всеми членами ряда, начиная с третьего, тогда из (12.32) получаем потенциал поля диполя [см. (12.27)].
§ 12.4. Дипольный электрический генератор (токовый диполь)
В вакууме или в идеальном изоляторе электрический диполь может сохраняться сколь угодно долго. Однако в реальной ситуации (электропроводящая среда) под действием электрического поля диполя возникает движение свободных зарядов и диполь либо экранируется, либо нейтрализуется.
Можно к диполю подключить источник напряжения, иными словами, клеммы источника напряжения представить как диполь. В этом случае, несмотря на наличие тока в проводящей среде, диполь будет сохраняться (рис. 12.14, а). Резистор R1 является эквивалентом сопротивления проводящей среды, ξ — ЭДС источника, r — его внутреннее сопротивление (рис. 12.14, б).
На основании закона Ома для полной цепи, если r >> R1>, то I = ξ/r.
Можно заключить, что в этом случае сила тока во внешней цепи будет оставаться почти постоянной, она почти не зависит от свойств среды (при условии r>> R1). Такая двухполюсная система, состоящая из истока и стока тока, называется дипольным электрическим генератором или токовым диполем.
Между дипольным электрическим генератором и электрическим диполем имеется большая аналогия, которая основывается на общей аналогии электрического поля в проводящей среде и электростатического поля.
Проиллюстрируем эту аналогию на примере плоского конденсатора.
Пусть между пластинами плоского конденсатора находится среда с удельным электрическим сопротивлением р или, иначе, с удельной электрической проводимостью γ (γ = 1/ρ). Сопротивление между пластинами конденсатора, как для проводника с сечением S и длиной l, равно
Электрическая проводимость равна
Если сравнить (12.33) с выражением для емкости плоского конденсатора
то можно заключить: формула (12.33) для проводимости получается из формулы (12.34) для емкости заменой произведения εε0 на γ. Суть аналогии электрического поля в проводящей среде и электростатического поля сводится к следующему:
— — — линии тока (электрическое поле в проводящей среде) совпадают с линиями напряженности электростатического поля при одинаковой форме электродов;
— — — в том и другом случаях многие формулы имеют тождественный вид, переход от одних формул к другим осуществляется заменой εε0 на γ, q на I, С на G (или 1/С на R). Закон Ома G =I/U аналогичен формуле С = q/U.
Воспользуемся этой аналогией и получим выражение для токового диполя. Аналогично электрическому моменту диполя введем дипольный момент дипольного электрического генератора:
где l — расстояние между точками истока и стока тока. Потенциал поля дипольного электрического генератора выражается формулой, аналогичной (12.27):
(в безграничной среде). Конфигурации линий напряженности электростатического поля электрического диполя и линий напряженности электрического поля токового диполя (они же совпадают и с линиями тока) одинаковы (см. рис. 12.3). В соответствии с изложенным в § 12.3 можно ввести и понятие мультипольного электрического генератора.
По существу, электрический мультипольный генератор — это некоторая пространственная совокупность электрических токов (совокупность истоков и стоков различных токов).
Все, что было сказано выше о потенциалах полей системы зарядов (электростатическое поле), справедливо и для такого генератора (токового мультиполя) в слабо проводящей среде.
Дата добавления: 2015-03-03; просмотров: 1471;