Основные физические взаимодействия
Известны четыре основных физических взаимодействия, которые определяют структуру нашего мира: сильные, слабые, электромагнитные и гравитационные.
1. Сильные взаимодействия происходят на уровне атомных ядер и представляют собой взаимное притяжение их взаимных частей. Действуют на расстояниях примерно 10-13 см. Одно из проявлений сильных взаимодействий — ядерные силы. Сильные, взаимодействия открыты Э. Резерфордом в 1911 году одновременно с открытием атомного ядра. Переносчиками сильных взаимодействий являются глюоны. Ядерные силы не зависят от заряда частиц. В сильных взаимодействиях величина заряда сохраняется.
2. Электромагнитное взаимодействие в 100-1000 раз слабее
сильного взаимодействия, но более дальнодействующее. Свойственно электрически заряженным частицам. Носителем электромагнитного взаимодействия является не имеющий заряда фотон – квант электромагнитного поля. В процессе электромагнитного взаимодействия электроны и атомные ядра соединяются в атомы, атомы – в молекулы. Электромагнитное взаимодействие связано с электрическими и магнитными полями. Электрическое поле возникает при наличии электрических зарядов, а магнитное поле — при их движении. Различные агрегатные состояния вещества, явление трения, упругие и другие свойства вещества определяются преимущественно силами межмолекулярного взаимодействия, которое по своей природе является электромагнитным. Электромагнитное взаимодействие описывается фундаментальными законами электростатики и электродинамики: законом Кулона, законом Ампера и др. Его наиболее общее описание дает электромагнитная теория Максвелла, основанная на фундаментальных уравнениях, связывающих электрическое и магнитное поля.
3. Слабые взаимодействия слабее электромагнитного. Радиус его действия 10-15 - 10-22 см. Слабое взаимодействие связано с распадом частиц, например, с происходящими в ядре превращениями протона в нейтрон, позитрон и нейтрино. Испускаемое нейтрино обладает огромной проницающей способностью — оно проходит через железную плиту толщиной миллиард километров. При слабых взаимодействиях меняется заряд частиц. Слабое взаимодействие представляет собой не контактное взаимодействие, а осуществляется путем обмена промежуточными тяжелыми частицами — бозонами.
4. Гравитационное взаимодействие характерно для всех материальных объектов вне зависимости от их природы. Оно заключается во взаимном притяжении тел и определяется фундаментальным законом всемирного тяготения: между двумя точечными телами действует сила притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними. Гравитационным взаимодействием определяется падение тел в поле сил тяготения Земли. Законом всемирного тяготения описывается, например, движение планет Солнечной системы и различных макрообъектов. Предполагается, что гравитационное взаимодействие обусловливается некими элементарными частицами — гравитонами, существование которых к настоящему времени экспериментально не подтверждено.
Гравитационное взаимодействие во много раз слабее электромагнитного. Оно не учитывается в теории элементарных частиц, поскольку на характерных для них расстояниях порядка 10-13 см дает чрезвычайно малые эффекты. Однако на ультрамалых расстояниях (10-33 см) и при ультрабольших энергиях гравитация вновь приобретает существенное значение. Сверхтяжелые виртуальные частицы создают вокруг себя заметное гравитационное поле, которое искажает геометрию пространства. В космических масштабах гравитационное взаимодействие имеет решающее значение. Радиус его действия не ограничен.
От силы взаимодействия зависит время, в течение которого совершается превращение элементарных частиц. Ядерные реакции, связанные с сильными взаимодействиями, происходят в течение 10-24 — 10-23 с. Это приблизительно тот кратчайший интервал времени, за который частица, ускоренная до высоких энергий, до скорости, близкой скорости света, проходит через элементарную частицу размером порядка 10-13 см. Изменения, обусловленные электромагнитными взаимодействиями, осуществляются в течение 10-19 — 10-21 с, а слабыми (например, распад элементарных частиц) — в основном 10-10 с.
Все четыре взаимодействия необходимы и достаточныдля построения разнообразного мира. Без сильных взаимодействий не существовали бы атомные ядра. Без электромагнитных взаимодействий не было бы ни атомов, ни молекул, ни макроскопических объектов, а также тепла и света. Без слабых взаимодействий не были бы возможны ядерные реакции в недрах Солнца и звезд, не происходили бы вспышки сверхновых звезд и необходимые для жизни тяжелые элементы не могли бы распространиться во Вселенной. Без гравитационного взаимодействия не только не было бы галактик, звезд, планет, но и вся Вселенная не могла бы эволюционировать, поскольку гравитация является объединяющим фактором, обеспечивающим единство Вселенной как целого и ее эволюцию.
Современная физика пришла к выводу, что все четыре фундаментальных взаимодействия, необходимые для создания из элементарных частиц сложного и разнообразного материального мира, можно получить из одного фундаментального взаимодействия — суперсилы. Наиболее ярким достижением стало доказательство того, что при очень высоких температурах (или энергиях) все четыре взаимодействия объединяются в одно. При энергии в 100 ГэВ объединяются электромагнитное и слабое взаимодействия. Такая температура соответствует температуре Вселенной через 10-10 с после Большого взрыва. При энергии 1015 ГэВ к ним присоединяется сильное взаимодействие, а при энергии 1019 ГэВ происходит объединение всех четырех взаимодействий.
Это предположение носит чисто теоретический характер, поскольку экспериментальным путем его проверить невозможно. Косвенно эти идеи подтверждаются астрофизическими данными, которые можно рассматривать как экспериментальный материал, накопленный Вселенной.
Дата добавления: 2015-02-28; просмотров: 1488;