Горелочные устройства

Необходимая интенсивность горения топливной пыли достигается подготовкой горючей смеси (смесеобразованием) в горелочном устройстве, называемом в дальнейшем горелкой.

Полученная в процессе размола и сушки топливная пыль при температуре 70…130°С потоком первичного воздуха, доля которого составляет от 15 до 40%, вдувается в топочную камеру через горелки. В горелки подается также вторичный воздух при температуре 250…420°С. Горелки выдают в топку два раздельных потока - пылевоздушную смесь и вторичный воздух, которые перемешиваются и образуют горючую смесь в топочной камере.

Горелки являются важным элементом топочного устройства, от их работы и размещения в топке зависит характер смесеобразования, что в сочетании с аэродинамикой топочной камеры определяет интенсивность воспламенения, скорость и полноту сгорания, а следовательно, и тепловую мощность и эффективность топки.

Различают вихревые и прямоточные пылевые горелки.

Вихревые горелки выполняются следующих видов:

двухулиточныес закручиванием аэропыли и вторичного воздуха в улиточном аппарате (рис. 5.7, а),

улиточно-лопаточные с улиточным закручиванием потока аэропыли и аксиальным лопаточным закручивателем вторичного воздуха (рис. 5.7, б);

прямоточно-улиточные, в которых аэропыль подается по прямоточному каналу и раздается в стороны за счет рассекателя, а вторичный воздух закручивается в улиточном аппарате (рис. 5.7, в);

двухлопаточные, в которых закручивание потоков вторичного воздуха и аэропыли обеспечивается аксиальным и тангенциальным лопаточным аппаратом (рис. 5.7, г).

Вихревые горелки имеют тепловую мощность от 25 до 100 МВт. Наиболее распространены двухулиточные и улиточнолопаточные горелки, последние обеспечивают большую тепловую мощность (75…100 МВт).

Вихревые горелки отличаются повышенной эжекцией горячих топочных газов в поступающую пылевоздушную смесь (см. рис. 4.10), что обеспечивает ее быстрый прогрев до температуры воспламенения. Лопаточный завихривающий аппарат может быть выполнен поворотным, что позволяет производить оптимальную настройку аэродинамики горелки.

Рис. 5.7. Виды вихревых пылеугольных горелок: а - двухулиточная горелка; б - улиточно-лопаточная горелка; 1 - улитка пылевоздушной смеси; 2 - улитка вторичного воздуха; 3 - кольцевой канал для выхода пылевоздушной смеси в топку; 4 - то же для вторичного воздуха; 5 - основная мазутная форсунка; 6 - рассекатель на выходе пылевоздушной смеси; 7 - завихривающие лопатки для вторичного воздуха; 8 - подвод центрального (третичного) воздуха; 9 - управление положением рассекателя; 10 - завихритель осевого потока воздуха; 11 - обмуровка топки; П - подсос топочных газов в корню факела; Л - завихривающие лопатки; В - подвод воздуха к горелкам; Тл - подвод топливно-воздушной смеси; У - завихривающая улитка, Dа – диаметр амбразуры горелки

На полноту сгорания топлива сильное влияние оказывают скорости вдувания в топку аэропыли и вторичного воздуха. Повышение скорости усиливает турбулентное перемешивание потоков, однако при слишком большой скорости происходит отрыв факела от горелки. Для лучшего перемешивания угольной пыли с горячим воздухом необходимо сохранять различие в скоростях этих потоков. Так, скорость аэропыли на выходе из горелки поддерживают на уровне w1 = 14…25 м/с, а скорость вторичного воздуха должна быть w2= (1,2…1,4)w1.

Вихревые горелки универсальны и применимы для любого твердого топлива, но наибольшее распространение получили при сжигании топлив с малым выходом летучих веществ.

Горелки повышенной тепловой мощности выполняются с двумя регулируемыми коаксиальными каналами по вторичному воздуху, что обеспечивает сохранение необходимых скоростей воздуха при работе на пониженных нагрузках. При нагрузках ниже 70% номинальной периферийный канал воздуха перекрыт и тем обеспечивается поддержание скорости воздуха.

Вихревые горелки создают более короткий факел по длине и широкий угол его раскрытия, обеспечивают интенсивное перемешивание потоков и глубокое выгорание топлива (до 90…95%) на относительно короткой длине факела. В этом отношении вихревые горелки являются горелками индивидуального действия, каждая горелка обеспечивает качественное сжигание топлива в своей части топочного объема.

Определяющим конструктивным параметром вихревых горелок является диаметр амбразуры Da. Горелки размещаются на достаточном расстоянии друг от друга - L1 = (2,2…2,3)Da и от боковых стен L2 = (1,6…2,0)Da, чтобы исключить раннее взаимодействие факелов и наброс факела на стены. При однофронтальном расположении горелок в 1…2 яруса экран задней стены получает повышенное тепловосприятие (на 10…20% выше среднего), и для исключения шлакования стены при твердом шлакоудалении глубина топки должна быть не менее bТ = (6…7)Da. Встречное (двухфронтальное) расположение горелок (см. рис. 5.1 a, б, в) характерно для мощных паровых котлов, когда необходимое число горелок невозможно разместить на одной стене. При встречном расположении выравнивается теплонапряжение экранов топки, повышается уровень температур в центре топки.

Прямоточные горелки из-за более низкой турбулизации потока создают дальнобойные струи с малым углом расширения и вялым перемешиванием первичного и вторичного потоков. Поэтому успешное сжигание топлива достигается взаимодействием струй разных горелок в объеме топочной камеры. Для этого применяются встречное расположение горелок с двух противоположных стен топки или угловое с тангенциальным направлением струй в объеме топки (рис. 5.8).

Прямоточные горелки могут быть прямоугольной формы (плоские) или круглые (рис. 5.9).

Рис. 5.8. Расположение прямоточных горелок на стенках топки: а - встречное; б - тангенциальное; dу - условный внутренний диаметр вращения факела

Горелки прямоугольной формы, особенно вытянутые по высоте, обладают высокой эжекцией окружающей газовой среды с боковых сторон струи. Поэтому такие горелки при внешней подаче аэропыли (рис. 5.9, а) имеют преимущества по условиям воспламенения.

Круглые горелки обычно выполняются с отдельной подачей аэропыли и горячего воздуха (рис. 5.9, б). Встречный наклон двух блоков горелок улучшает перемешивание и сгорание. Такие горелки получили название плоскофакельных.

Рис. 5.9a. Прямоточная пылеугольная горелка прямоугольной формы с центральным каналом горячего воздуха: 1 - канал горячего воздуха; 2 - канал аэропыли; 3 - подсос топочных газов к струе аэропыли; В - подвод воздуха; Тл- подвод топливно-воздушной смеси.


Горелки с внутренней подачей пыли и рассекателем (рис. 5.9, в) имеют лучшие условия перемешивания с воздухом, но прогрев топлива происходит медленнее, поэтому такая горелка более приемлема для качественного каменного угля с высоким выходом летучих веществ.

При угловом расположении горелок и тангенциальном движении факела в сечении топки чаще всего применяют блоки щелевых горелок (рис. 5.9, г).

Рис. 5.9б. Прямоточная пылеугольная плоскофакельная горелка с круглыми соплами: 1 - канал горячего воздуха; 2 - канал аэропыли; 3 - подсос топочных газов к струе аэропыли; 4 - поворотная головка; В - подвод воздуха; Тл - подвод топливно-воздушной смеси.


Прямоточные горелки применяются в основном для сжигания высокореакционных топлив: бурых углей, торфа, сланцев и каменных углей с высоким выходом летучих веществ. Скорость пылевоздушной смеси на выходе из горелок принимается w1 = 20…28 м/с, оптимальная скорость вторичного воздуха w2= (1,5…1,7)w1.

Горелки для высококонцентрированной пыли получают все более широкое применение. Подача пыли из бункера к горелке происходит в этом случае не первичным потоком воздуха, а с помощью небольшого количества (0,1…0,3% всего расхода) сжатого воздуха, который обеспечивает хорошую текучесть аэропыли по пылепроводу малого диаметра 60…90 мм (рис. 5.10, а).

Рис. 5.9в. Прямоточная пылеугольная горелка прямоугольной формы с поворотной головкой и внутренней подачей аэропыли: 1 - канал горячего воздуха; 2 - канал аэропыли; 3 - подсос топочных газов к струе аэропыли; 4 - поворотная головка; В - подвод воздуха; Тл - подвод топливно-воздушной смеси.

Рис. 5.9г. Прямоточная пылеугольная щелевая блочная горелка: 1 - канал горячего воздуха; 2 - канал аэропыли; 3 - подсос топочных газов к струе аэропыли; 4 - поворотная головка; В - подвод воздуха; Тл - подвод топливно-воздушной смеси; М - подвод мазута


Перемешивание подаваемой в котел пыли обеспечивается непосредственно на выходе в горелку при смешении пыли с первичным потоком воздуха (рис. 5.10, б, в). При этом ликвидируется громоздкая система пылепроводов диаметром 300…500 мм от бункеров пыли к горелкам котла, обеспечивается равномерность раздачи пыли по всем горелкам, резко снижается удельный расход энергии на пневмотранспорт и создается возможность регулирования расхода первичного воздуха в зависимости от нагрузки, что ранее было невозможно по условиям транспорта пыли.

Рис. 5.10. Горелки с подачей высококонцентрированной пыли: а - смеситель пыли с воздухом; б - прямоточная горелка; в - двухулиточная вихревая горелка; 1 - обмуровка топки; 2 - амбразура горелки; 3 - распылитель; I - первичный воздух; II - вторичный воздух

Аэродинамическое сопротивление горелки по вторичному воздуху, Па, определяется по формуле

 

5.10


где , ρВ - аксиальная скорость, м/с, и плотность воздуха, кг/м3, при его температуре в горелке; ξГОР - коэффициент сопротивления горелки, который для прямоточных горелок

составляет 1,5…2,0 и для вихревых 2,5…3,5.








Дата добавления: 2015-02-28; просмотров: 2245;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.