Продукты сгорания топлива
Состав продуктов сгорания при сжигании 1 кг твердого или жидкого топлива или 1 м3 газового топлива можно записать в следующем виде
4.28 |
Здесь VВ - объем воздуха, использованного для сжигания 1 кг (м3) топлива; VCO2 , VSO2 и др. - объемы отдельных газов в продуктах сгорания, м3/кг (или м3/м3).
Под цифрой 1 в (4.28) объединены объемы продуктов полного окисления горючих элементов топлива. Объемы продуктов полного сгорания состоят из объема трехатомных сухих газов VRO2
4.29 |
и объема водяных паров VH2O в результате окисления водорода топлива. В составе VRO2 всегда VCO2>>VSO2, поскольку содержание серы в топливах мало. Под цифрой 2 в (4.28) объединены объемы азота и кислорода, представляющие собой остаток сухого воздуха после горения топлива, и водяные пары. Здесь VN2>>VO2 как кислород в значительной мере израсходован на окисление. Объем водяных паров VВП включает в себя испарившуюся влагу топлива и влажность самого воздуха. Для сильновлажных бурых углей значение VВП соизмеримо или превышает VCO2. Под цифрой 3 объединены объемы продуктов неполного окисления горючих элементов топлива, при этом VCO>VH2>VCH4 . Соотношение между объемами VCO и VH2 в среднем составляет 3:1. Наличие в продуктах неполного сгорания объема CH4 говорит о грубых отклонениях режима горения от нормы.
Рассмотрим полное сгорание топлива в стехиометрических соотношениях и при условии, когда в продуктах сгорания VCO = 0; VH2= 0; VCH4 = 0 и нет остаточного кислорода VO2= 0.
Объем воздуха, необходимый для полного сгорания 1 кг (м3) топлива при условии безостаточного использования кислорода, называется теоретически необходимым объемом воздуха V0В ,а объем газов после сгорания - теоретическим объемом продуктов сгорания V0Г
4.30 |
Теоретический объем сухих газов
4.31 |
и полный объем газов
4.32 |
Объем V0H2O включает полный объем водяных паров в продуктах сгорания Объем V0N2 состоит в основном из азота воздуха с небольшим дополнением объема азота из топлива. Для обозначения объемов, соответствующих теоретическим условиям горения, вводится индекс 0.
Теоретические объемы воздуха и продуктов сгорания определяются составом сжигаемого топлива и приведены в табл. 4.1.
Объем сухих трехатомных газов VRO2 в формулах (4.30) и (4.31) одинаков и не зависит от того, подан на горение теоретический объем воздуха V0В или большее его количество, поскольку содержание CO2 и SO2 в атмосферном воздухе мало и не учитывается в расчетах. Объем других составляющих продуктов сгорания при подводе VВ > V0В будет изменяться. При этом увеличение объема продуктов сгорания сверх V0Г определяется только избыточным количеством воздуха ΔVВ = VВ - V0В и водяными парами, содержащимися в нем:
В действительных условиях невозможно довести топливо до полного сгорания при теоретически необходимом объеме воздуха из-за несовершенства перемешивания топлива с воздухом в большом топочном объеме за короткое время пребывания газов в нем (2…3 с). Поэтому для обеспечения полноты сгорания топлива, удовлетворяющего экономическим показателям работы парового котла, действительный объем воздуха в зоне горения всегда поддерживают несколько больше теоретического. Отношение этих объемов называют коэффициентом избытка воздуха в продуктах сгорания
Α = VВ / VВ0 | 4.33 |
Коэффициент избытка воздуха на выходе из топочной камеры обозначается αТ. Доля избыточного воздуха в топке зависит от сорта топлива, способа его сжигания и конструкции топочного устройства. Твердое топливо, отличающееся большим выходом летучих веществ, легче воспламеняется и быстрее сгорает и относится по условиям горения к реакционным топливам.
Эффективное перемешивание топлива с воздухом и быстрое сжигание достигаются при использовании газового топлива и мазута, поэтому они требуют наименьшего избытка воздуха в зоне горения. Разный избыток воздуха нужен при сжигании одного и того же топлива, но в разных топочных устройствах (например, в прямоточной или вихревой топочной камере), отличающихся эффективностью перемешивания.
Расчетный коэффициент избытка воздуха на выходе из топки αТ принимают для разных топлив в следующих пределах: для твердых αТ = 1,15…1,25; для жидких αТ = 1,02…1,10; для газовых αТ = 1,05…1,10.
Уменьшение избытка воздуха дает экономию расхода энергии на тягодутьевых устройствах и повышает КПД котла. Однако его снижение ниже расчетного значения αТ ведет к росту недожога топлива и снижению экономичности котла.
При работе парового котла под наддувом избыток воздуха на выходе из топки αТ равен его значению в горелке αГОР и сохраняется неизменным по всему газовому тракту, так как все его газоходы в этом случае имеют небольшое избыточное давление и выполнены газоплотными; исключение составляет регенеративный воздухоподогреватель.
При работе котла под разрежением, создаваемым дымососами, происходит подсос в газовый тракт холодного воздуха из окружающей среды через неплотности ограждения, чаще всего в местах сопряжения отдельных элементов котла.
За счет присоса воздуха объем продуктов сгорания по газовому тракту постепенно увеличивается, снижается температура газов. Присосы определяются в долях от теоретически необходимого объема воздуха
4.34 |
где ΔVi - объем присосанного воздуха в пределах i-ой поверхности парового котла.
Тогда избыток воздуха за i-ой по порядку поверхностью нагрева после топки определяется как
4.35 |
В топочной камере также имеют место присосы воздуха ΔαТ. С учетом этого избыток воздуха в зоне горения будет составлять
4.36 |
Объем уходящих газов, определяемый за последней поверхностью котла,
4.37 |
состоит из объема продуктов полного сгорания топлива V0Г, и объема избыточного воздуха ΔVизб
4.38 |
где (αТ - 1) - избыток воздуха в зоне горения.
Первое слагаемое в формуле (4.38) характеризует организованный избыток воздуха, необходимый для обеспечения достаточно полного сжигания топлива. Второе слагаемое - вредные присосы холодного воздуха.
Первоначально определение избытка воздуха в потоке газов осуществлялось косвенным способом - путем определения процентного содержания RO2=CO2+SO2 в сухих газах при известном для данного вида топлива максимально возможном RO2МАКС. Максимальное содержание сухих трехатомных газов в продуктах сгорания (при α = 1 и O2 = 0)
4.39 |
где βТ. - топливная характеристика, зависящая при сжигании в воздухе от состава топлива,
4.40 |
Для различных видов топлив RO2МАКС составляет: для твердых топлив RO2МАКС = 10-20%; для мазута RO2МАКС = 16-17%; для природного газа RO2МАКС = 11-13%.
Для определения избытка воздуха используется углекислотная формула
4.41 |
В составе газа RO2 определяется ручным газоанализатором либо хроматографом. Косвенным методом при сжигании твердых топлив нельзя пользоваться, когда топливо в своем составе имеет карбонаты, разлагающиеся в зоне горения с выделением СО2 (например, сланцы).
Расчет характеристики βТ для газового топлива, а также расчеты при совместном сжигании газа с мазутом или твердым топливом требуют пересчета объемных характеристик топлива на массовые. Так, масса 1 м3 сухого газового топлива, кг/м3,
4.42 |
где ρГ - плотность сухого обеззоленного газового топлива, кг/м3; dГ, аГ - влагосодержание и содержание минеральной пыли в топливе, г/м3.
Пересчет состава газового топлива на элементный состав условного твердого топлива (в процентах) производится по специальным формулам и RO2МАКС по (4.39) однозначно связано с топливной характеристикой βТ. При любом незафиксированном изменении состава топлива это значение также меняется, что ведет к ошибке в определении α.
Кроме того, в реальных условиях в продуктах сгорания имеется избыточный кислород и возможен химический недожог топлива. Тогда значение RO2МАКСстановится переменным, и для его определения необходим полный химический анализ газов
4.43 |
При этом использование формулы (4.39), в которой RO2МАКС получено только по составу топлива, ведет к дополнительной ошибке. Поэтому указанная углекислотная формула определения α по (4.41) является приближенной. В последнее время наиболее широко контроль избытка воздуха в газовом тракте котла обеспечивают с помощью кислородомера. При постоянном протоке через прибор небольшой доли дымовых газов из заданного места газового тракта из них выделяется кислород, обладающий специфическими магнитными свойствами. Прибор показывает количество O2 в процентах от объема осушенных газов.
Остаточный кислород в продуктах сгорания, в процентах от объема сухих газов, можно выразить следующим образом:
4.44 |
С учетом ранее сказанного объем VС.Г = αV0В, тогда
4.45 |
и окончательно искомый избыток воздуха
4.46a |
Если в дымовых газах содержатся продукты неполного сгорания (СО, Н2), то нельзя весь оставшийся кислород считать избыточным, часть его должна быть израсходована на окисление этих продуктов. Тогда формула (4.46а) примет вид
4.46б |
где СО, Н2 - процентное содержание в газах продуктов недожога. Их количество определяется методами газовой хроматографии.
Кислородная формула (4.46) точна, когда теоретические объемы воздуха и сухих газов одинаковы. Реально V0С.Г > V0В и определение α будет иметь небольшую ошибку, но в допустимых пределах для технических измерений при эксплуатации.
Контроль избытка воздуха на котле обычно осуществляют в двух точках газового тракта - в поворотной камере (или за конвективным пароперегревателем высокого давления) и за воздухоподогревателем (в уходящих из котла газах). Разность этих показателей характеризует долю присосов холодного воздуха в поверхностях конвективной шахты, а значение O2 в поворотной камере показывает, выдерживаются ли условия оптимального избытка воздуха в топочной камере, поскольку присосы в горизонтальном газоходе стабильны и незначительны. Прямое определение избытка воздуха в топке технически затруднительно и неудовлетворительно по точности из-за высокой температуры газов и неустойчивой аэродинамики потока.
Дата добавления: 2015-02-28; просмотров: 1455;