Анатомия аккомодационного аппарата глаза, механизм аккомодации; их характеристика при различных видах клинической рефракции
Аккомодационный аппарат глаза обеспечивает фокусировку изображения на сетчатке, а также приспособление глаза к интенсивности освещения. Он включает в себя радужку с отверстием в центре — зрачком — и ресничное тело с ресничным пояском хрусталика.
Фокусировка изображения обеспечивается за счёт изменения кривизны хрусталика, которая регулируется цилиарной мышцей. При увеличении кривизны хрусталик становится более выпуклым и сильнее преломляет свет, настраиваясь на видение близко расположенных объектов. При расслаблении мышцы хрусталик становится более плоским, и глаз приспосабливается для видения удалённых предметов. Так же в фокусировке изображения принимает участие и сам глаз в целом. Если фокус находится за пределами сетчатки — глаз (за счёт глазодвигательных мышц) немного вытягивается (чтобы видеть вблизи). И наоборот округляется, при рассматривании далёких предметов. У других животных, в частности, головоногих, при аккомодации превалирует как раз изменение расстояния между хрусталиком и сетчаткой.
Зрачок представляет собой отверстие переменного размера в радужной оболочке. Он выполняет роль диафрагмы глаза, регулируя количество света, падающего на сетчатку. При ярком свете кольцевые мышцы радужки сокращаются, а радиальные расслабляются, при этом зрачок сужается, и количество света, попадающего на сетчатку уменьшается, это предохраняет её от повреждения. При слабом свете наоборот сокращаются радиальные мышцы, и зрачок расширяется, пропуская в глаз больше света.
В состав основных анатомических элементов, обеспечивающих ак-комодационную функцию, входят (на рис.1) хрусталик(2), цинновы связки(9), цилиарный мускул(10), стекловидное тело(3), склера(6), глазодвигательные мышцы. Поскольку аккомодационная функция связана с изменением оптической системы глаза, то важно четко представлять саму оптическую систему и те исполнительные звенья, которые вызывают в ней соответствующую перестройку.
Оптическая система глаза состоит из роговицы, жидкости передней камеры, хрусталика, стекловидного тела и приемной части - сетчатки. Роговица и хрусталик выполняют роль линз, между которыми размещается водянистая влага со своим показателем преломления. В соответствии с аккомодационной теорией Г. Гельмгольца (1856) переменным компонентом в оптической системе глаза является только хрусталик, а исполнительным элементом, под влиянием которого он изменяется, - цилиарное тело со своими мышечными волокнами.
Сам хрусталик представляет собой двояковыпуклую линзу, пере-дняя поверхность которого обращена в сторону передней камеры и тем самым смывается ее влагой, а задняя примыкает к стекловидному телу. При аккомодации изменяется преимущественно кривизна пе-редней поверхности хрусталика, так как она не встречает активного сопротивления со стороны передней камеры, заполненной водянистой влагой. Связь между хрусталиком и его исполнительным органом - цилиарным телом осуществляется через цинновы связки.
Цинновы связки к хрусталику крепятся по экваториальному кольцу в месте перехода его передней поверхности в заднюю через хрусталиковую сумку, а к цилиарному телу - со стороны цилиарных отростков
Таким образом, хрусталик удерживается по всему кольцевому периметру цинковыми связками как бы на весу, что создает впечатление его неустойчивого положения. Тем более такая неустойчивость может вызвать большие сомнения в отношении центровки оптической системы глаза, в которой хрусталик является одним из основных ее компонентов. Однако надежность такой конструкции компенсируется наличием постоянного натяжения - тургора цинновых связок, создаваемого их реципрокным натяжением со стороны цилиарного мускула и хрусталика. Хрусталик за счет своей эластичности, направленной на его изменение в шаровидную форму, постоянно натягивает цинновы связки на себя, в то время как цилиарное тело при своем расслаблении натягивает их в свою сторону. В результате цинновы связки как бы растягиваются, что и приводит к их постоянному напряжению и упругости. Именно благодаря такому постоянному натяжению цинновых связок создается относительно устойчивое положение хрусталика, находящегося в подвешенном состоянии.
Сами же цинновы связки представляют собой стекловидные нити, тесно сплетенные между собой. При этом различают передние и задние волокна. Последние начинаются в области ora serrata, т.е. в том месте, где заканчивается граница оптической части сетчатки. В хрусталике они прикрепляются к его передней капсуле впереди экватора, образуя гомогенную пластинку zonula lamella. Передние волокна отходят от цилиарного тела у основания его цилиарных отростков и соединяются с капсулой хрусталика позади.
При сокращении цилиарной мышцы, имеет место ослабление натяжения цинновых связок с ее стороны, которое тут же компенсируется натяжением со стороны хрусталика за счет его эластичных свойств. Образно выражаясь, взаимодействие между цилиарным телом и хрусталиком, связанными между собой цинновыми связками, можно представить в виде соревнующихся между собой в перетягивании каната двух лиц, каждое из которых натягивает его на себя. При малейшем ослаблении усилия со стороны одного из них канат натягивается с противоположной стороны. При этом сам канат, пока соревнуются между собой соперники, постоянно находится в натянутом состоянии. Нечто аналогичное имеет место и во взаимодействии цилиарного тела и хрусталика через цинновы связки. Причем их реципрокные силы формируются в цилиарном теле за счет изменения его тонуса, т.е. степени сокращения, а в хрусталике - его эластичных и упругих свойств.
По современным представлениям в цилиарном теле выделяются три вида мышечных волокон (рис.3):
- меридиональные (мышца Брюкке),
- кольцевые (мышца Мюллера),
- радиальные (мышца Иванова) (В.М. Шепкалова, 1962).
Отдельные авторы (А.П.Нестеров, А.Я.Бунин, Л.А.Кацнельсон, 1974) указывают на наличие четвертого вида - мышцы Коллагена. При этом меридиональные волокна идут параллельно склере, радиальная часть - перпендикулярно склере, а кольцевые волокна имеют циркулярное направление.
Спереди мышечные волокна цилиарного тела имеют разные формы прикрепления: к эластичному сухожильному кольцу у корня радужки, непосредственно к склере, у волокнистого остова трабекулярной сети, куда эластичные сухожильные тяжи мышечных волокон поступают, пронизывая склеральную шпору, и, изгибаясь в форме арок, переходят в него в строме роговицы. С задней, противоположной стороны сухожильные отростки, а точнее - элементы стромы мышечных воло-кон цилиарной мышцы соединяются, видимо, с эластичной мембраной Бруха, доходя почти до заднего полюса глазного яблока (С.Л. Шаповалов, 1977).
Таким образом, цилиарное тело представляет собой сопряжение разных видов мышечных волокон и его можно рассматривать как разновидность мультиэффекторного аппарата. Кстати заметим, что подобная анатомическая конструкция цилиарного тела не является исключением. По мультиэффекторному принципу построены скелетные и глазодвигательные мышцы, мышечная система век и другие в форме сопряжения быстрофазных соматических и медленнофазных парасимпатических мышечных волокон. В данном случае речь идет, видимо, об одном парасимпатическом виде, т.е. о глазных мышечных волокнах с разной функциональной направленностью (В.Ф. Ананин, 1991).
Вместе с тем высказывается и другая точка зрения, согласно которой "разделение цилиарной мышцы на отдельные части является артефактом"
Установлено также, в частности на собаках, что при сокращении мышечных волокон цилиарного тела его внутренняя часть перемещается в сторону оптической оси глаза (I.W.Rohen, F.I.Rentsch, 1969). Это смещение при аккомодации они показали в виде схемы. У человека при аккомодации, сопровождающейся сокращением цилиарной мышцы, происходит ее укорачивание в меридиональном направлении с одновременным смещением впереди и внутри, в сторону оптической оси глаза
Дата добавления: 2015-02-25; просмотров: 4992;