Механизм электрической проводимости
В полупроводниковых кристаллах атомы устанавливают ковалентные связи (то есть, один электрон в кристалле кремния, как и алмаза, связан двумя атомами), электронам необходим уровень внутренней энергии для высвобождения из атома ( Дж против Дж, чем и характеризуется отличие между полупроводниками и диэлектриками). Эта энергия появляется в них при повышении температуры (например, при комнатной температуре уровень энергии теплового движения атомов равняется Дж), и отдельные электроны получают энергию для отрыва от ядра. С ростом температуры число свободных электронов и дырок увеличивается, поэтому в полупроводнике, не содержащем примесей, удельное электрическое сопротивление уменьшается. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей, чем 1,5–2 эВ. Электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников. Поэтому ток в полупроводнике складывается из электронного и дырочного токов:
.
Дырки
Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Это обуславливает переход электрона с другого атома на атом со свободным местом. На атом, откуда перешёл электрон, входит другой электрон из другого атома и т.д. Этот процесс обуславливается ковалентными связями атомов. Таким образом, происходит перемещение положительного заряда без перемещения самого атома. Этот условный положительный заряд называют дыркой.
Обычно подвижность дырок в полупроводнике ниже подвижности электронов.
Собственная проводимость полупроводников
Собственные полупроводники – это полупроводники, в которых нет примесей (доноров и акцепторов). Концентрация электронов и дырок в таком полупроводнике равны.
Для понимания механизма электрической проводимости в полупроводниках рассмотрим строение полупроводниковых кристаллов и природу связей, удерживающих атомы кристалла друг возле друга. Кристаллы германия и других полупроводников имеют атомную кристаллическую решетку (рис. 1).
Рис. 1. |
Рис. 2. |
Ковалентные связи германия достаточно прочны и при низких температурах не разрываются. Поэтому германий при низкой температуре не проводит электрический ток. Участвующие в связи атомов валентные электроны прочно привязаны к кристаллической решетке, и внешнее электрическое поле не оказывает заметного влияния на их движение. Аналогичное строение имеет и кристалл кремния.
Рис. 3. |
Дополнительная энергия, которая должна быть затрачена, чтобы разорвать ковалентную связь и сделать электрон свободным, называется энергией активации.
Получить эту энергию электроны могут при нагревании кристалла, при облучении его высокочастотными электромагнитными волнами и т.д.
Как только электрон, приобретя необходимую энергию, уходит с локализованной связи, на ней образуется вакансия. Эту вакансию может легко заполнить электрон с соседней связи, на которой, таким образом, также образуется вакансия. Таким образом, благодаря перемещению электронов связи происходит перемещение вакансий по всему кристаллу. Эта вакансия ведет себя точно так же, как и свободный электрон – она свободно перемещается по объему полупроводника. Более того, учитывая, что и полупроводник в целом, и каждый его атом при не нарушенных ковалентных связях электрически нейтральны, можно сказать, что уход электрона со связи и образование вакансии фактически эквивалентно появлению на этой связи избыточного положительного заряда. Поэтому образовавшуюся вакансию можно формально рассматривать как носитель положительного заряда, который называют дыркой (рис. 4).
Рис. 4. |
Сравните с металлами: там концентрация свободных электронов примерно равна концентрации атомов.
В отсутствие внешнего электрического поля эти свободные электроны и дырки движутся в кристалле полупроводника хаотически.
Рис. 5. |
Общая удельная электропроводность полупроводника складывается из дырочной и электронной проводимостей. При этом у чистых полупроводников число электронов проводимости всегда равно числу дырок. Поэтому говорят, что чистые полупроводники обладают электронно-дырочной проводимостью, или собственной проводимостью.
Примесная проводимость полупроводников
Легирование – введение примеси в полупроводник, в этом случае полупроводник называется примесным.
Один и тот же полупроводник обладает либо электронной, либо дырочной проводимостью – это зависит от химического состава введенных примесей. Если в полупроводник, состоящий из элементов 4 группы (например, кремний или германий), ввести в качестве примеси элемент 5 группы, то получим донорный полупроводник (у него будет электронный тип проводимости), или полупроводник -типа. (Примеси создающие такую электропроводимость называют донорами).
Если же ввести в качестве примеси элемент 3 группы, то получится акцепторный полупроводник, обладающий дырочной проводимостью ( – тип). (Дырочная примесная электропроводимость создается атомами, имеющими меньшее количество валентных электронов, чем основные атомы. Подобные примеси называются акцепторными).
Примесной проводимостью полупроводников называется проводимость, обусловленная наличием примесей в полупроводнике.
Примесными центрами могут быть:
1. атомы или ионы химических элементов, внедренные в решетку полупроводника;
2. избыточные атомы или ионы, внедренные в междоузлия решетки;
3. различного рода другие дефекты и искажения в кристаллической решетке: пустые узлы, трещины, сдвиги, возникающие при деформациях кристаллов, и др.
Изменяя концентрацию примесей, можно значительно увеличивать число носителей зарядов того или иного знака и создавать полупроводники с преимущественной концентрацией либо отрицательно, либо положительно заряженных носителей.
Примеси можно разделить на донорные (отдающие) и акцепторные (принимающие).
Дата добавления: 2015-02-23; просмотров: 1506;