Свойства частости.
1.
2. Частость достоверного события равна 1. Wn(U)=1.
3. Частость суммы попарно несовместных событий равна сумме частостей.
Рассмотрим систему Ai, i=1, ..., k; события попарно несовместны, т.е.
Событие
Пусть в результате некоторого испытания произошло событие A. По определению сумы это означает, что в этом испытании произошло некоторое событие Ai. Так как все события попарно несовместны, то это означает, что никакое другое событие Aj (i¹j) в этом испытании произойти не может. Следовательно:
nA=nA1+nA2+...+nAk
Теория вероятности используется при описании только таких испытаний, для которых выполняется следующее предположение: Для любого события A частость наступления этого события в любой бесконечной серии испытаний имеет один и тот же предел, который называется вероятностью наступления события A.
Следовательно, если рассматривается вероятность наступления произвольного события, то мы понимаем это число следующим образом: это частость наступления события в бесконечной (достаточно длинной) серии испытаний.
К сожалению, попытка определить вероятность как предел частости, при числе испытаний, стремящихся к бесконечности, закончилась неудачно. Хотя американский ученый Мизес создал теорию вероятности, базирующуюся на этом определении, но ее не признали из-за большого количества внутренних логических несоответствий.
Теория вероятности как наука была построена на аксиоматике Колмогорова.
Дата добавления: 2015-02-16; просмотров: 603;