К расчету магнитного поля

Французские физики Ф. Савар и Ж.Б. Био изучали магнитное поле, создаваемое проводниками с постоянным током различной формы. На основании многочисленных опытов они пришли к выводу, что магнитная индукция поля проводника с током пропорциональна силе тока I, зависит от формы и размеров проводника, а также от расположения рассматриваемой точки по отношению к проводнику. Био и Савар пытались получить самый общий закон – для проводника любой формы и любой точки поля. Однако сделать это им не удалось. По их просьбе этой проблемой занялся французский математик П.С. Лаплас. Он высказал важную гипотезу о том, что при наложении магнитных полей справедлив принцип суперпозиции, т.е. принцип независимости действия полей. Если имеется несколько проводников с током, каждый из которых создает в исследуемой точке магнитное поле с индукциями …, то результирующая магнитная индукция будет равна векторной сумме всех : .

Если перейти к малым отрезкам провода с током, то суммирование надо заменить интегрированием и тогда индукция , создаваемая всем проводником с током I, будет равна: где – индукция, создаваемая элементом длины проводника dℓ, интегрирование проводится по всей длине проводника.

Лаплас обобщил экспериментальные результаты Био и Савара в виде дифференциального закона, называемого закономБио – Савара – Лапласа,

Рисунок 1.7 - К закону Био-Савара-Лапласа
I
A
по которомумагнитная индукция , создаваемая в некоторой точке А элементом проводника dℓ с током I, определяется формулой


Выберем произвольную точку А вблизи проводника. Вектор направлен в точке А перпендикулярно плоскости, построенной на векторах и по правилу правого винта, и совпадает с направлением касательной к линии индукции в точке А (пунктирный круг) (рис.1.7). Коэффициент пропорциональности k зависит от выбора системы единиц. В СИ это размерная величина, равная μ0/4π, где μ0 - магнитная постоянная, равная 4π∙10-7 Гн/м.

Таким образом, магнитную индукцию поля, создаваемую в вакууме током I, текущим по проводу конечной длины ℓ и любой формы, можно найти по формуле









Дата добавления: 2015-02-13; просмотров: 907;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.