Момент инерции

 

При изучении вращения твердых тел будем пользоваться понятием момента инерции. Моментом терции системы (тела) относительно данной оси называется физическая величина, равная сумме произведений масс п материальных точек системы на квадраты их расстояний до рассматриваемой оси:

В случае непрерывного распределения масс эта сумма сводится к интегралу

где интегрирование производится по всему объему тела. Величина rв этом случае есть функция положения точки с координатами х, у, z.

 

Рис. 23

 

В качестве примера найдем момент инерции однородного сплошного цилиндра высотой h и радиусом R относительно его геометрической оси (рис. 23). Разобьем цилиндр на отдельные полые концентрические цилиндры бесконечно малой толщины drсвнутренним радиусом rи внешним r+dr.Момент инерции каждого полого цилиндра dJ = r2dm(так как dr << r, то считаем, что расстояние всех точек цилиндра от оси равно г), где dm — масса всего элементарного цилиндра; его объем 2prhdr. Если r— плотность материала, то dm = 2prhrdr и dJ = 2phrr3dr. Тогда момент инерции сплошного цилиндра

 

но так как pR2h— объем цилиндра, то его масса m = pR2hr, а момент инерции

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера: момент инерции тела J относительно произвольной оси равен моменту его инерции Jc относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы т тела на квадрат расстояния а между осями:

(16.1)

В заключение приведем значения моментов инерции (табл. 1) для некоторых тел (тела считаются однородными, т — масса тела).

Таблица 1

 

Тело Положение оси Момент инерции
Полый тонкостенный цилиндр радиусом R Сплошной цилиндр или диск радиусом R Прямой тонкий стержень длиной l Прямой тонкий стержень длиной l Шар радиусом R Ось симметрии   Тоже   Ось перпендикулярна стержню и проходит через его середину Ось перпендикулярна стержню и проходит через его конец Ось проходит через центр шара тR2   1/2тR2   1/12ml2 1/3ml2   2/5тR2  

 

 








Дата добавления: 2015-02-13; просмотров: 1402;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.