Статистические графики. Для получения приблизительного представления о форме распределения строят графики распределения.

Для получения приблизительного представления о форме распределения строят графики распределения.

Полигон распределения - графическое изображение дискретного вариационного ряда распределения. По оси абсцисс откладывают варианты, а по оси ординат - частоты ряда. Полученные точки соединяются прямыми линиями.

Полученная таким образом линия называется эмпирической (фактической) кривой распределения.На нее оказывают влияние как общие (отражающие основную закономерность), так и случайные условия.

Если влияние случайных величин будет погашено, то будет установлена теоретическая кривая распределения. Она выражает определенный тип распределения, отвечает на вопрос о наличии определенного закона распределения. Познание законов распределения - наиболее важная цель статистического исследования. В каждом конкретном случае закономерность распределения может быть, а может и не быть.

Гистограмма распределения- графическое изображение интервального вариационного ряда распределения. Образуемые над интервалами столбики пропорциональны по высоте частотам значений признака по каждому интервалу. При неравных интервалах высота столбиков должна быть пропорциональна плотности распределения признака в соответствующем интервале.

Чтобы получить эмпирическую кривую, гистограмму нужно преобразовать в полигон. Для этого каждый интервал делим на две равные части (находим середину интервала), ставим точки и затем их соединяем последовательно отрезками прямых линий.

Эмпирическая кривая позволяет предварительно предположить форму теоретической кривой распределения, характеризующую функциональную связь между изменением варьирующего признака и изменением частот.









Дата добавления: 2015-02-13; просмотров: 537;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.