ФИЗИОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЧЕЛОВЕКА

 

Общие характеристики анализаторов. Целесообразная и безопасная деятель-ность человека основывается на постоянном приеме и анализе информации о характе-ристиках внешней среды и внутренних системах организма. Этот процесс осуществля-ется с помощью анализаторов — подсистем центральной нервной системы (ЦНС), обе-спечивающих прием и первичный анализ информационных сигналов. Информация, по-ступающая через анализаторы, называется сенсорной (от лат. sensus — чувство, ощу-щение), а процесс ее приема и первичной переработки — сенсорным восприятием.

 
 

 


Рис. 2.11. Функциональная схема анализатора

 

Общая функциональная схема анализатора представлена на рис. 2.11.

Центральной частью анализатора является некоторая зона в коре головного мозга. Периферическая часть — рецепторы — находится на поверхности тела для приема внешней информации либо размещена во внутренних системах и органах для восприятия информации об их состоянии (внешние рецепторы в обычной речи называют органами чувств). Проводящие нервные пути соединяют рецепторы с соответст­вующими зонами мозга.

В зависимости от специфики принимаемых сигналов различают следующие анализаторы:

Внешние — зрительный (рецептор — глаз); слуховой (рецептор — ухо); тактиль-ный, болевой, температурный (рецепторы кожи); обоня­тельный (рецептор в носовой полости); вкусовой (рецепторы на по­верхности языка и неба).

Внутренние — анализатор давления; кинестетический (рецепторы в мышцах и сухожилиях); вестибулярный (рецептор в полости уха); специальные, расположенные во внутренних органах и полостях тела.

Рассмотрим основные параметры анализато­ров.

1. Абсолютная чувствительность к интенсивности сигнала (абсо­лютный порог ощущения по интенсивности) — характеризуется ми­нимальным значением воздейст-вующего раздражителя, при котором возникает ощущение. В зависимости от вида раз-дражителя абсолютный порог измеряется в единицах энергии, давления, температуры, коли­чества или концентрации вещества и т.п. Минимальную адекватно ощущаемую интенсивность сигнала принято называть нижним порогом чувствительности.

Психофизическими опытами установлено, что величина ощущений изменяется медленнее, чем сила раздражителя. Интенсивность ощу­щений Е выражается логариф-мической зависимостью (закон Вебера-Фехнера)

где J — интенсивность раздражителя; K и С — константы, определяе­мые данной сенсорной системой.

2. Предельно допустимая интенсивность сигнала (обычно близка к болевому порогу). Максимальную адекватно ощущаемую величину сигнала принято называть верхним порогом чувствительности.

3. Диапазон чувствительности к интенсивности — включает все переходные значения раздражителя от абсолютного порога чувстви­тельности до болевого порога.

4. Дифференциальная (различительная) чувствительность к изме­нению интенсивности сигнала — это минимальное изменение интен­сивности сигнала, ощуща-емое человеком. Различают абсолютные дифференциальные пороги, характеризуемые значением , и относи­тельные, выражаемые в процентах: , где J — ис-ходная интенсивность.

5. Дифференциальная (различительная) чувствительность к изме­нению частоты сигнала — это минимальное изменение частоты F сигнала, ощущаемое человеком. Из-меряется аналогично дифференци­альному порогу по интенсивности, либо в абсолют-ных единицах , либо в относительных — .

6. Границы (диапазон) спектральной чувствительности (абсолют­ные пороги ощущений по частоте, длине волны) определяются для анализаторов, чувствительных к изменению частотных характеристик сигнала (зрительного, слухового, вибрационного), отдельно нижний и верхний пороги.

7. Пространственные характеристики чувствительности специфич­ны для каждого анализатора.

8. Для каждого анализатора характерна минимальная длительность сигнала, необходимая для возникновения ощущений. Время, проходя­щее от начала воздействия раздражителя до появления ответного действия на сигнал (сенсомоторная реакция), называют латентным периодом.

Величина латентного периода (с) для различных анализаторов следующая:

 

тактильный (прикосновение)...………………………. 0,09...0,22

слуховой (звук)..........…………………………………. 0,12...0,18

зрительный (свет).........……………………………….. 0,15...0,22

обонятельный (запах).......…………………………….. 0,31...0,39

температурный (тепло-холод)...……………………… 0,28...1,6

вестибулярный аппарат (при вращении)…………….. 0,4

болевой (рана)…………………………………………. 0,13...0,89

 

9. Адаптация (привыкание) и сенсибилизация (повышение чувст­вительности) — характеризуются временем и присущи каждому типу анализаторов.

Функционирование разных анализаторов существенно изменяется под влиянием неблагоприятных для человека условий. Низке и высокие температуры, вибрации, перегрузки, невесомость, слишком интенсивные потоки информации, ведущие к дефициту времени, и ее недостаток, утомление, вызванное длительной работой или небла­гоприятными условиями, состояние стресса — все эти факторы вызы­вают различные изменения характеристик анализаторов.

Рис. 2.12. Спектральная чувствительность глаза

 

Чтобы обеспечить достаточную надежность деятельности человека при приеме и анализе сигналов в любых условиях, для практических расчетов рекомендуется ис-пользовать не абсолютные и дифференци­альные пороги чувствительности анализато-ров к различным характе­ристикам сигналов, а оперативные пороги, характеризующие не минимальную, а некоторую оптимальную различимость сигналов. Обычно опера-тивный порог в 10...15 раз выше соответствующего абсолютного и дифференциального.

Характеристика зрительного анализатора. В процессе деятельности человек до 90 % всей информации получает через зрительный анали­затор. Прием и анализ ин-формации происходит в световом диапазоне (380—760 нм) электромагнитных волн. Цветовые ощущения вызыва­ются действием световых волн, имеющих различную дли-ну. Прибли­зительные границы длин и соответствующие им ощущения показаны на рис. 2.12.

Глаз различает семь основных цветов и более сотни их оттенков. Наибольшая чувствительность в условиях обычного дневного освеще­ния (В = 9,56 кд/м2) достигает-ся при длине волн 554 нм (в желто-зе­леной части спектра) и убывает в обе стороны от этого значения.

Характеристикой чувствительности является относительная видность , где — ощущение, вызываемое источником излучения с длиной волны 554 нм; Sl — ощущение, вызываемое источником той же мощности с длиной волны l.

Полный диапазон световой чувствительности 3×10-8... 2,25×105 кд/м2. Абсолютная слепящая яркость наступает при 225 000 кд/м2. Эффект ослепления может наступить и при меньших яркостях, если скорость нового объекта, попавшего в поле зрения, превысит яркость того объекта, на которую адаптирован глаз.

Минимальная интенсивность светового воздействия, вызывающая ощущение света, называется порогом световой чувствительности. В качестве меры интенсивно-сти принимается яркость воспринимаемого объекта в канделах на квадратный метр (кд/м2). В случае восприятия объектов, светящихся отраженным светом, яркость рас-считывают по формуле В= rЕ, где r — коэффициент отражения поверхности; Е — освещенность, лк.

Порог световой чувствительности изменяется в широких пределах в процессе адаптации зрительного анализатора к внешнему световому воздействию.

Наиболее высокая чувствительность, достигаемая в ходе темновой адаптации в течение нескольких (до 3—4) часов, представляет собой абсолютный порог световой чувствительности.

Различие предмета на фоне других определяется контрастом его с фоном. Для практических целей используется показатель, именуемый порогом контрастной чувствительности. Величина контраста оценива­ется количественно, как отношение разности яркости (кд/м2) предмета и фона к большей яркости:

- темный объект на светлом фоне (прямой контраст):

;

- светлый объект на темном фоне (обратный контраст):

где Воб и Вф — яркости объекта и фона. Оптимальная величина конт­раста считается 0,6.. .0,9.

Временные характеристики восприятия сигналов:

- латентный период (скрытый период) — время от подачи сигнала до момента возникновения ощущения (0, 15. ..0,22 с);

- порог обнаружения сигнала при большей яркости — 0,00 1 с, при длительности вспышки 0,1 с. Яркость сигнала практического значения не имеет;

- привыкание к темноте (неполная темновая адаптация) длится от нескольких секунд до нескольких минут;

- восприятие мелькающего света (критическая частота слияния мельканий) изменяется от 14 до 70 Гц в зависимости от яркости импульсов, их формы, угловых размеров объекта, уровня зрительной адаптации, функционального состояния человека и т.п. Для исключения слияния мельканий рекомендуется проецирование сигналов с частотой 3...8 Гц.

При оценке восприятия пространственных характеристик основ­ным понятием яв-ляется острота зрения, которая характеризуется ми­нимальным углом, под которым две точки видны как раздельные. Острота зрения зависит от освещенности, контрастности, формы объ­екта и других факторов. При оптимальной освещенности (100...700 лк) порог разрешения составляет от Г до 5 мин. При уменьшении конт­растности острота зрения снижается.

При восприятии объектов в двухмерном и трехмерном пространстве различают поле зрения и глубинное зрение. Бинокулярное поле зрения охватывает в горизонталь-ном направлении 120...180°, по вертикали вверх — 55...60° и вниз —65...72°. Опознание взаимного расположе­ния, форм объектов возможно в границах: вверх — 25, вниз—35, право и влево — по 32° от оси зрения. В поле бинокулярного зрения предметы не рас-познаются, но обнаруживаются. Точное восприятие зрительных сигналов и четкое раз-личение деталей возможно только в центральной части поля зрения размером 3° от оси во все стороны. Глубинное зрение связано с восприятием пространства. Ошибка вос-приятия абсолютной удаленности составляет 12 % при дистанции 30 м. Восприятие пространства — формы, объема, величины и взаимного расположения объектов, их рельефа, удаленности и направления, в котором они находятся, достигается за счет бинокулярного зрения двумя глазами.

Информация об удалении предметов достигается за счет конвер­генции — сведе-ний зрительных осей на объекте восприятия, благодаря чему возникают мышечные двигательные ощущения, которые и дают информацию.

Характеристика слухового анализатора. С помощью звуковых сиг­налов человек получает до 10 % информации.

Характерными особенностями слухового анализатораявляются:

- способность быть готовым к приему информации в любой момент времени;

- способность воспринимать звуки в широком диапазоне частот и выделять необходимые;

- способность устанавливать со значительной точностью место­расположение источника звука.

В связи с этим слуховое представление информации осуществля­ется в тех случа-ях, когда оказывается возможным использовать ука­занные свойства слухового анализа-тора. Наиболее часто слуховые сигналы применяются для сосредоточенного внимания человека — оператора (предупредительные сигналы и сигналы опасности), для переда-чи информации человеку-оператору, находящемуся в положе­нии, не обеспечивающим ему достаточной для работы видимости объекта управления, приборной панели и т.п., а также для разгрузки зрительной системы.

Для эффективного использования слуховой формы представления информации необходимо знание характеристик слухового анализатора. Свойства слухового анализа-тора оператора проявляются в восприятии звуковых сигналов. С физической точки зре-ния звуки представляют собой распространяющиеся механические колебательные дви-жения в слышимом диапазоне частот.

Механические колебания характеризуются амплитудой и частотой. Амплитуда — наибольшая величина измерения давления при сгуще­ниях и разрежениях. Частота — число полных колебаний в одну се­кунду. Единицей ее измерения является герц (Гц) — одно колебание в секунду. Амплитуда колебаний определяет величину звукового дав­ления и интенсивность звука (или силу звучания). Звуковое давление принято измерять в Паскалях (Па).

Основные параметры(характеристики) звуковых сигналов (колебаний):

- интенсивность (амплитуда),

- частота и форма, которые отражаются в таких звуковых ощуще­ниях как громкость, высота и тембр.

Воздействие звуковых сигналов на звуковой анализатор определя­ется уровнем звукового давления (Па). Интенсивность (сила) звука (Вт/м2) определяется плотностью потока звуковой энергии (плотно­стью мощности).

Для характеристики величин, определяющих восприятие звука, существенными являются не только абсолютные значения интенсив­ности звука и звукового давления, сколько их отношение к пороговым значениям (J0=10-12 Вт/м2 или Р0=2×10-5 Па). В качестве таких относительных единиц измерения используют децибелы (дБ)

,

где J и Р — соответственно интенсивность и уровень звукового давле­ния, J0 и Р0 — их пороговые значения.

Интенсивность звука уменьшается обратно пропорционально квад­рату расстоя-ния; при удвоении расстояния снижается на 6 дБ. Абсо­лютный порог слышимости звука составляет (принят) 2×10-5 Па (10-12 Вт/м2) и соответствует уровню 0 дБ.

Пользование шкалой децибел удобно, так как почти весь диапазон слышимых звуков укладывается менее чем в 140 дБ (рис. 2.13).

Громкость — характеристика слухового ощущения, наиболее тесно связанная с интенсивностью звука. Уровень громкости выражается в фонах; фон численно равен уровню звукового давления в дБ для чистого тона частотой 1000 Гц. Дифференциаль-ная чувствительность к изменению громкости — К=( ) наблюдается в диапазоне частот 500...1000 Гц. С характеристикой громкости тесно связана характеристика раз-дражающего действия звука. Ощущение неприятности звуков возрастает с увеличением их громкости и частоты.

Рис. 2.13. Диаграмма области слухового восприятия

 

Минимальный уровень определенного звука, который требуется для того, чтобы вызвать слуховое ощущение в отсутствие шума, назы­вают абсолютным порогом слы-шимости. Значение его зависит от тона звука (частота, длительность, форма сигнала), метода его предъявления и субъективных особенностей слухового анализатора опера-тора. Абсо­лютный порог слышимости имеет тенденцию с возрастом уменьшаться (рис. 2.14).

Высота звука, как и его громкость, характеризует звуковое ощущение оператора. Частотный спектр слуховых ощущений простирается от 16...20 Гц до 20 000...22 000 Гц. В реальных условиях человек воспринимает звуковые сигналы на определенном аку-стическом фоне. При этом фон может маскировать полезный сигнал. Эффект маскиров-ки имеет двоякое значение. В ряде случаев фон может маскировать полезный (нужный) сигнал, в некоторых случаях может улучшать акустическую обстановку. Так, известно, имеется тенденция маски­ровки высокочастотного тона низкочастотным, который менее вреден для человека.

Рис. 2.14. Зависимость потери слуха с возрастом для различных частот звукового

сигнала

 

Слуховой анализатор способен фиксировать даже незначительные изменения ча-стоты входного звукового сигнала, т.е. обладает избира­тельностью, которая зависит от уровня звукового давления, частоты и длительности звукового сигнала. Минимально заметные различения составляют 2...3 Гц и имеют место на частотах менее 10 Гц, для частот более 10 Гц минимально заметные различения составляют около 0,3 % частоты звукового сигнала. Избирательность повышается при уровнях громкости 30 дБ и более и длительности звучания, превышающей 0,1 с. Минимально заметные различения ча-стоты звукового сигнала сущест­венно уменьшаются при его периодическом повторе-нии. Оптималь­ными считаются сигналы, повторяющиеся с частотой 2...3 Гц. Слыши-мость, а следовательно, и обнаруживаемость звукового сигнала зависят от длительно-сти его звучания. Так для обнаружения звуковой сигнал должен длиться не менее 0,1 с.

Наряду с рассмотренными звуковыми сигналами в управлении используются речевые сигналы для передачи информации или команд управления от оператора к оператору. Важным условием восприятия речи является различение длительности и интенсивности отдельных звуков и их комбинаций. Среднее время длительности произнесения гласного звука равно примерно 0,36 с, согласного 0,02...0,03 с. Восп­риятие и понимание речевых сообщений существенно зависят от темпа их передачи, наличия интервалов между словами и фразами. Опти­мальным считается темп 120 слов/мин, интенсивность речевых сигна­лов должна превышать интенсивность шумов на 6,5 дБ. При одновременном увеличении уровня речевых сигналов и шумов при постоянном их отношении разборчивость речи сохраняется и даже несколько увеличивается. При значительном увеличении уровня речи и шума до 120 и 115 дБ и соответственно разборчивость речи ухудшается на 20 %. Опознание речевых сигналов зависит от длины слова. Так, односложные слова распознаются в 13 % случаев, шестисложные — в 41 %. Это объясняется наличием в сложных словах большого числа опознавательных признаков. Имеет место повышение до 10 % точности распознавания слов, начинающихся с гласного звука. При переходе к фразам оператор воспринимает не отдельные слова или их сочетания, а смысловые грамматические конструкции, длина которых (до уровня 11 слов) не имеет особого значения.

Полезно знать, что используемые стереотипные словосочетания, фразеологиз-мы, распознаются значительно хуже, чем это можно было ожидать. Увеличение альтер-нативных слов возможных словосочета­ний, фраз, повышает правильность опознания. Однако включение фраз, допускающих неоднозначность толкования их смыслового со­держания, приводит к замедлению процесса восприятия.

Таким образом, вопрос организации звукового и речевого взаимо­действия «оператор — оператор», «техническое средство — оператор» является не тривиальным и его оптимальное решение оказывает суще­ственное воздействие на безопасность производственных процессов.

Характеристика кожного анализатора. Обеспечивает восприятие прикоснове-ния (слабого давления), боли, тепла, холода и вибрации. Для каждого из этих ощуще-ний (кроме вибрации) в коже имеются специфические рецепторы, либо их роль выпол-няют свободные нерв­ные окончания. Каждый микроучасток кожи обладает наиболь-шей чувствительностью к тем раздражителям (сигналам), для которых на этом участке имеется наибольшая концентрация соответствующих рецепторов — болевых, темпера-турных и тактильных. Так, плотность размещения составляет: на тыльной части кисти —188 болевых, 14 осязательных, 7 Холодовых и 0,5 тепловых на квадратный сантиметр поверхности; на грудной клетке соответственно —196, 29,9 и 0,3. Воздействие в этих точках даже не специфическим, но достаточно сильным раздражителем независимо от его характера вызывает специ­фическое ощущение, обусловленное типом рецептора. Например, ин­тенсивный тепловой луч, попадая в точку боли, вызывает ощущение боли.

Чувствительность к прикосновению. Это — ощущение, возникающее при действии на кожную поверхность раз­личных механических стимулов (прикосновение, давление), вызываю­щих деформацию кожи. Ощущение возникает только в момент деформации. Абсолютный порог тактильной чувствительности опре­деляется по тому минимальному давлению предмета на кожную по­верхность, которое производит едва заметное ощущение прикосновения. Наиболее высоко развита чувствительность на дистальных частях тела. Примерные пороги ощущений: для кончиков пальцев руки — 3 г/мм2; на тыльной стороне пальца — 5 г/мм2, на тыльной стороне кисти —12 г/мм2; на животе — 26 г/мм2; на пятке — 250 г/мм2. Порог различения в среднем равен примерно 0,07 исход­ной величины давления.

Тактильный анализатор обладает высокой способностью к про­странственной локализации. При последовательном воздействии оди­ночных раздражителей ошибка в локализации колеблется в пределах 2...8 мм. Характерной особенностью тактильного анализатора является быстрое развитие адаптации, т.е. исчезновение чувства прикосновения или давления. Время адаптации зависит от силы раздражителя и для различных участков тела может изменяться в пределах 2...20 с.

При ритмических последовательных прикосновениях к коже каж­дое из них воспринимается как раздельное, пока не будет достигнута критическая частота Fкр, при которой ощущение последовательности прикосновений переходит в специфическое ощущение вибрации. В зависимости от условий и места раздражения Fкр — 5...20 Гц.

При F>Fкр от анализа собственно тактильной чувствительности переходят к анализу вибрационной.

Вибрационная чувствительность. Вибрационная чувствительность обусловле-на теми же рецепторами, что и тактильная, поэтому топография распределения вибра-ционной чувствительности по поверхности тела аналогична тактильной.

Диапазон ощущения вибрации высок: 5...12 000 Гц. Наиболее вы­сока чувстви-тельность к частотам 200...250 Гц. При их увеличении и уменьшении вибрационная чувствительность снижается. В этом случае пороговая амплитуда вибрации минималь-на и равна 1 мкм. Пороги вибрационной чувствительности различны для разных участ-ков тела. Наибольшей чувствительностью обладают дистальные участки тела человека, т.е. которые наиболее удалены от его медиальной плоскости (например, кисти рук).

Кожная чувствительность к боли. Этот вид чувствительности обусловлен воз-действием на поверхность кожи ме­ханических, тепловых, химических, электрических и других раздражи­телей. В эпителиальном слое кожи имеются свободные нервные окон-чания, которые являются специализированными нервными ре­цепторами. Между так-тильными и болевыми рецепторами существуют противоречивые отношения. Проявля-ются они в том, что наименьшая плотность болевых рецепторов приходится на те уча-стки кожи, которые наиболее богаты тактильными рецепторами, и наоборот. Противо-речие обусловлено различием функций рецепторов в жизни организма. Бо­левые ощу-щения вызывают оборонительные рефлексы, в частности, рефлекс удаления от раздра-жителя. Тактильная чувствительность свя­зана с ориентировочными рефлексами, в част-ности, это вызывает рефлекс сближения с раздражителем.

Биологический смысл боли состоит в том, что она, являясь сигна­лом опасности, мобилизует организм на борьбу за самосохранение. Под влиянием болевого сигнала перестраивается работа всех систем организма и повышается его реактивность.

Болевой порог при механическом давлении на кожу измеряется в единицах дав-ления и зависит от места измерений. Например, порог болевой чувствительности кожи живота составляет 15...20 г/мм2, кон­чиков пальцев — 300 г/мм2. Латентный период око-ло 370 мс. Крити­ческая частота слияния дискретных болевых раздражителей — 3 Гц.

Пороговая плотность потока тепла, вызывающего болевое ощуще­ние, составляет 88 Дж/(м×с).

Температурная чувствительность. Свойственна организмам, обла­дающим постоянной температурой тела, обеспечиваемой терморегуля­цией. Температура кожи несколько ниже температуры тела и различна, для отдельных участков: на лбу — 34...35 °С, на лице —20...25 °С, на животе — 34 °С, стопах ног — 25...27 °С. Средняя температура свобод­ных от одежды участков кожи 30...32 °С. Коже присущи два вида рецепторов. Одни реагируют только на холод, другие только на тепло.

Пространственные пороги зависят от стимулирующих факторов: при контактном воздействии, например, ощущение возникает уже на площади в 1 мм2, при лучевом — начиная с 700 мм2. Латентный период температурного ощущения равен примерно 0,20 с. Абсолютный порог температурной чувствительности определяется по минимально ощу­щаемому изменению температуры участков кожи относительно физи­ологического нуля, т.е. собственной температуры данной области кожи, адаптировавшейся к внешней температуре. Физиологический нуль для различных областей кожи достигается при температурах среды между 12...18°С и 41...42 °С. Для тепловых рецепторов абсолютный порог составляет примерно 0,2 °С, для холодных — 0,4 °С. Порог различи­тельной чувствительности составляет примерно 1 °С.

Кинестетический анализатор. Обеспечивает ощущение положения и движений тела и его частей. Имеется три вида рецепторов, воспри­нимающих:

1. Растяжение мышц при их расслаблении — «мускульные верете­на»;

2. Сокращение мышц — сухожильные органы Гольджи;

3. Положение суставов (обусловливающее так называемое «сустав­ное чувство»). Предполагается, что их функции выполняют глубинные рецепторы давления.

Возможности двигательного аппарата представляют определенную значимость при конструировании защитных устройств, органов управ­ления. Сила сокращения мышц человека колеблется в широких пре­делах. Например, номинальная сила кисти в 450...650 Н при соответствующей тренировке может быть доведена до 900 Н. Сила сжатия, в среднем равная 500 Н для правой и 450 Н для левой руки, может увеличиваться в два раза и более.

Оптимальные усилия на органы управления:

- для рукояток 20...40 Н (100 Н — максимальное);

- для кнопок, тумблеров, переключателей легкого типа 1400...1600Н, тяжелого —6000...12000 Н;

- для ножных педалей управления от 20...50 (используемых часто) до ЗООН (используемых редко);

- для рычажного управления от 20...40 (используемых часто) до 120...160Н (используемых редко).

Диапазон скоростей, развиваемых движущимися руками человека, находится в пределах 0,01...8000 см/с. Наиболее часто используются скорости порядка 5...800 см/с. Скорость движения больше в направ­лении к себе, чем от себя; в вертикальной плоскости, чем в горизон­тальной; сверху вниз, чем снизу вверх; вперед-назад, чем вправо-влево; слева направо для правой руки и справа налево для левой, чем наоборот. Вращательные движения в 1,5 раз быстрее поступательных.

Обонятельный анализатор. Предназначен для восприятия челове­ком различ-ных запахов (их диапазон охватывает до 400 наименований). Рецепторы расположены на участке площадью около 2,5 см2 слизистой оболочки в носовой полости.

Условиями восприятия запахов являются летучесть пахучего веще­ства (выделе-ние его молекул в свободном виде); растворимость веществ в жирах; движение воздуха, содержащего молекулы пахучего вещества в области обонятельного анализатора.

Абсолютный порог обоняния измеряется долями миллиграмма вещества на литр воздуха (мг/л). Запахи могут сигнализировать чело­веку о нарушениях в ходе технологических процессов и об опасностях.

Вкусовой анализатор. В физиологии и психологии распространена четырехкомпонентная теория вкуса, согласно которой существуют четыре вида элементарных вкусовых ощущений: сладкого, кислого, горького и соленого. Все остальные ощущения представляют их ком­бинации. Абсолютные пороги вкусового анализатора выражаются в величинах концентраций раствора и они примерно в 10 000 раз выше, чем обонятельного. Различная чувствительность вкусового анализатора довольно груба, в среднем она составляет 20 %. Восстановление вку­совой чувствительности после воздействия различных раздражителей заканчивается через 10...15 мин.

 








Дата добавления: 2015-02-10; просмотров: 2235;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.029 сек.