Строение оптоволокна
Волоконная оптика - раздел оптики, рассматривающий распространение электромагнитных волн оптического диапазона по световодам - оптическим волокнам. Конструкция отдельно взятого оптического волокна достаточно проста. Сердечник из оптически более плотного материала окружен оболочкой с меньшим коэффициентом преломления и все это покрыто защитной оболочкой. Оптическое волокно - типичный диэлектрический волновод электромагнитных волн.
Когда поток света пересекает границу раздела двух сред с показателями преломления n1 и n2 то, как известно, наблюдаются два явления: преломление и отражение. Если световой поток пересекает границу раздела со стороны оптически более плотной среды, то угол преломления больше угла падения. С ростом угла падения преломленный луч будет прижиматься к границе раздела.
И, наконец, при определенном угле падения, называемом критическим, преломленный луч начнет скользить вдоль поверхности раздела. При углах падения, больших критического, преломленный световой поток отсутствует (в идеализированном случае), поверхность раздела приобретает свойства зеркала - вся переносимая лучом энергия остается в отраженном потоке. Это явление носит название полного внутреннего отражения. На эффекте полного внутреннего отражения построены все оптические волокна. Условно оптическим волокном называют световоды, диаметр которых менее 0.5 мм.
Рис. 12. Волоконная оптика основывается на эффекте полного отражения
Оптоволокно представляет собой оптический волновод – круглый стержень из оптически прозрачного диэлектрика. Оптические волноводы из-за малых размеров поперечного сечения принято называть волоконно-оптическими светодиодами или оптическими волокнами.
Оптическое волокно состоит из небольшой по размеру кварцевой трубочки. Из-за добавления различных легирующих добавок оптическая плотность у кварцевой трубочки меняется. Образуется, как бы, две трубочки, имеющие разную оптическую плотность. Внутренняя трубочка – это сердцевина (ядро) и она более темная, а внешняя – это оболочка и она более светлая. Световой импульс находится практически все время внутри сердцевины и на границе двух сред сердцевины и оболочки отражается внутрь сердцевины. Назначение оболочки – создание лучших условий отражения на границе «сердцевина-оболочка» и защита от излучения в окружающее пространство. Поверх оболочки оптического волокна наложено первичное защитно-упрочняющее покрытие, которое повышает прочность волокна.
Рис.13. Срез оптоволоконного кабеля
Для лучшего представления процессов, происходящих в оптическом волокне, удобно использовать законы геометрической оптики. Согласно этим законам, световые волны(моды) изображают лучами, которые отражаются и преломляются на границах раздела сред с разными оптическими свойствами. Оптические свойства среды принято характеризовать показателем преломления. Среда с большим показателем преломления называется оптически более плотной. Оптические волны распространяются в оптическом волокне при условии, что сердцевина оптически более плотна по отношению к оптической плотности оболочки.
Чтобы защитить кварцевые трубочки от влаги и внешних воздействий, на внешнюю оболочку кварцевой трубочки наносят слой лака 2-3 мкм, а затем покрывают ее первичным защитным буфером, что позволяет придать эластичность и гибкость волокну. Внешний диаметр оптического волокна в первичном буфере — 250 мкм. Некоторые оптические волокна покрывают вторичным слоем защитного буфера. Внешний диаметр оптоволокна с вторичным буфером составляет 900 мкм. Диаметр внешней оболочки для всех оптоволокон, имеет стандартный размер 125 мкм, что позволяет использовать в структурированной кабельной системе стандартизованные разъемные и неразъемные соединения.
Передача данных в оптоволокне производится с помощью света - как известно - одной из самых быстрых материй во Вселенной. электрический сигнал медного кабеля проходит через специальный конвертер и превращается в свет. Каждая жила оптики подобна стеклянной трубе в зеркальной трубе. (Полимер разной плотности. Напр 9/125 микрон) Свет, проникая в нее - отражается от стыка границ жил жилы и летит все дальше. В конце путешествия он принимается приемным устройством и обратно перекодируется в электрический сигнал.
Тем не менее, передача данных по оптоволокну осуществляется медленнее скорости света (~1млрд.км/ч). По причине того что микролазеры, использующиеся для передачи света по оптоволокну не производят свет с такой скоростью. А также по причине потерь в результате преломления лучей.
Скорость затухания сигнала в оптоволокне различается в зависимости от типа оптической жилы. Так многомодовый кабель (50/125, 62/125) позволяет передавать сигнал на 2-3 километра без существенных потерь. Одномодовый кабель (9/125) - работает на расстоянии до 10км. Скорее всего многое зависит от материала, который используется при производстве кабелей. Указанные длины соответствуют кабелям из современных полимеров. Скорее всего, жила из более плотного материала позволит передавать свет на более длинные расстояния. Также, все зависит о источника сигнала. Соответственно - чем он мощнее, тем дальше "полетит" свет.
Дата добавления: 2015-01-29; просмотров: 3884;